File size: 5,380 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
from torch import Tensor, tensor
from torchmetrics.functional.text.wip import _wip_compute, _wip_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["WordInfoPreserved.plot"]
class WordInfoPreserved(Metric):
r"""Word Information Preserved (`WIP`_) is a metric of the performance of an automatic speech recognition system.
This value indicates the percentage of words that were correctly predicted between a set of ground-
truth sentences and a set of hypothesis sentences. The higher the value, the better the performance of the ASR
system with a WordInfoPreserved of 1 being a perfect score. Word Information Preserved rate can then be
computed as:
.. math::
wip = \frac{C}{N} * \frac{C}{P}
where:
- :math:`C` is the number of correct words,
- :math:`N` is the number of words in the reference
- :math:`P` is the number of words in the prediction
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~List`): Transcription(s) to score as a string or list of strings
- ``target`` (:class:`~List`): Reference(s) for each speech input as a string or list of strings
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``wip`` (:class:`~torch.Tensor`): A tensor with the Word Information Preserved score
Args:
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Examples:
>>> from torchmetrics.text import WordInfoPreserved
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> wip = WordInfoPreserved()
>>> wip(preds, target)
tensor(0.3472)
"""
is_differentiable: bool = False
higher_is_better: bool = False
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
errors: Tensor
preds_total: Tensor
target_total: Tensor
def __init__(
self,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.add_state("errors", tensor(0.0), dist_reduce_fx="sum")
self.add_state("target_total", tensor(0.0), dist_reduce_fx="sum")
self.add_state("preds_total", tensor(0.0), dist_reduce_fx="sum")
def update(self, preds: Union[str, list[str]], target: Union[str, list[str]]) -> None:
"""Update state with predictions and targets."""
errors, target_total, preds_total = _wip_update(preds, target)
self.errors += errors
self.target_total += target_total
self.preds_total += preds_total
def compute(self) -> Tensor:
"""Calculate the Word Information Preserved."""
return _wip_compute(self.errors, self.target_total, self.preds_total)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torchmetrics.text import WordInfoPreserved
>>> metric = WordInfoPreserved()
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torchmetrics.text import WordInfoPreserved
>>> metric = WordInfoPreserved()
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|