|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from torchmetrics import Metric |
|
from torchmetrics.functional.text.squad import ( |
|
PREDS_TYPE, |
|
TARGETS_TYPE, |
|
_squad_compute, |
|
_squad_input_check, |
|
_squad_update, |
|
) |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["SQuAD.plot"] |
|
|
|
|
|
class SQuAD(Metric): |
|
"""Calculate `SQuAD Metric`_ which is a metric for evaluating question answering models. |
|
|
|
This metric corresponds to the scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~Dict`): A Dictionary or List of Dictionary-s that map ``id`` and ``prediction_text`` to |
|
the respective values |
|
|
|
Example ``prediction``: |
|
|
|
.. code-block:: python |
|
|
|
{"prediction_text": "TorchMetrics is awesome", "id": "123"} |
|
|
|
|
|
- ``target`` (:class:`~Dict`): A Dictionary or List of Dictionary-s that contain the ``answers`` and ``id`` in |
|
the SQuAD Format. |
|
|
|
Example ``target``: |
|
|
|
.. code-block:: python |
|
|
|
{ |
|
'answers': [{'answer_start': [1], 'text': ['This is a test answer']}], |
|
'id': '1', |
|
} |
|
|
|
Reference SQuAD Format: |
|
|
|
.. code-block:: python |
|
|
|
{ |
|
'answers': {'answer_start': [1], 'text': ['This is a test text']}, |
|
'context': 'This is a test context.', |
|
'id': '1', |
|
'question': 'Is this a test?', |
|
'title': 'train test' |
|
} |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``squad`` (:class:`~Dict`): A dictionary containing the F1 score (key: "f1"), |
|
and Exact match score (key: "exact_match") for the batch. |
|
|
|
Args: |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torchmetrics.text import SQuAD |
|
>>> preds = [{"prediction_text": "1976", "id": "56e10a3be3433e1400422b22"}] |
|
>>> target = [{"answers": {"answer_start": [97], "text": ["1976"]}, "id": "56e10a3be3433e1400422b22"}] |
|
>>> squad = SQuAD() |
|
>>> squad(preds, target) |
|
{'exact_match': tensor(100.), 'f1': tensor(100.)} |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 100.0 |
|
|
|
f1_score: Tensor |
|
exact_match: Tensor |
|
total: Tensor |
|
|
|
def __init__( |
|
self, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
|
|
self.add_state(name="f1_score", default=torch.tensor(0, dtype=torch.float), dist_reduce_fx="sum") |
|
self.add_state(name="exact_match", default=torch.tensor(0, dtype=torch.float), dist_reduce_fx="sum") |
|
self.add_state(name="total", default=torch.tensor(0, dtype=torch.int), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: PREDS_TYPE, target: TARGETS_TYPE) -> None: |
|
"""Update state with predictions and targets.""" |
|
preds_dict, target_dict = _squad_input_check(preds, target) |
|
f1_score, exact_match, total = _squad_update(preds_dict, target_dict) |
|
self.f1_score += f1_score |
|
self.exact_match += exact_match |
|
self.total += total |
|
|
|
def compute(self) -> dict[str, Tensor]: |
|
"""Aggregate the F1 Score and Exact match for the batch.""" |
|
return _squad_compute(self.f1_score, self.exact_match, self.total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.text import SQuAD |
|
>>> metric = SQuAD() |
|
>>> preds = [{"prediction_text": "1976", "id": "56e10a3be3433e1400422b22"}] |
|
>>> target = [{"answers": {"answer_start": [97], "text": ["1976"]}, "id": "56e10a3be3433e1400422b22"}] |
|
>>> metric.update(preds, target) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.text import SQuAD |
|
>>> metric = SQuAD() |
|
>>> preds = [{"prediction_text": "1976", "id": "56e10a3be3433e1400422b22"}] |
|
>>> target = [{"answers": {"answer_start": [97], "text": ["1976"]}, "id": "56e10a3be3433e1400422b22"}] |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(preds, target)) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|