File size: 6,066 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union

import torch
from torch import Tensor

from torchmetrics import Metric
from torchmetrics.functional.text.squad import (
    PREDS_TYPE,
    TARGETS_TYPE,
    _squad_compute,
    _squad_input_check,
    _squad_update,
)
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["SQuAD.plot"]


class SQuAD(Metric):
    """Calculate `SQuAD Metric`_ which is a metric for evaluating question answering models.

    This metric corresponds to the scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).

    As input to ``forward`` and ``update`` the metric accepts the following input:

    -  ``preds`` (:class:`~Dict`): A Dictionary or List of Dictionary-s that map ``id`` and ``prediction_text`` to
       the respective values

       Example ``prediction``:

                .. code-block:: python

                    {"prediction_text": "TorchMetrics is awesome", "id": "123"}


    - ``target`` (:class:`~Dict`): A Dictionary or List of Dictionary-s that contain the ``answers`` and ``id`` in
      the SQuAD Format.

        Example ``target``:

        .. code-block:: python

            {
                'answers': [{'answer_start': [1], 'text': ['This is a test answer']}],
                'id': '1',
            }

        Reference SQuAD Format:

        .. code-block:: python

            {
                'answers': {'answer_start': [1], 'text': ['This is a test text']},
                'context': 'This is a test context.',
                'id': '1',
                'question': 'Is this a test?',
                'title': 'train test'
            }

    As output of ``forward`` and ``compute`` the metric returns the following output:

    -  ``squad`` (:class:`~Dict`): A dictionary containing the F1 score (key: "f1"),
        and Exact match score (key: "exact_match") for the batch.

    Args:
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example:
        >>> from torchmetrics.text import SQuAD
        >>> preds = [{"prediction_text": "1976", "id": "56e10a3be3433e1400422b22"}]
        >>> target = [{"answers": {"answer_start": [97], "text": ["1976"]}, "id": "56e10a3be3433e1400422b22"}]
        >>> squad = SQuAD()
        >>> squad(preds, target)
        {'exact_match': tensor(100.), 'f1': tensor(100.)}

    """

    is_differentiable: bool = False
    higher_is_better: bool = True
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 100.0

    f1_score: Tensor
    exact_match: Tensor
    total: Tensor

    def __init__(
        self,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)

        self.add_state(name="f1_score", default=torch.tensor(0, dtype=torch.float), dist_reduce_fx="sum")
        self.add_state(name="exact_match", default=torch.tensor(0, dtype=torch.float), dist_reduce_fx="sum")
        self.add_state(name="total", default=torch.tensor(0, dtype=torch.int), dist_reduce_fx="sum")

    def update(self, preds: PREDS_TYPE, target: TARGETS_TYPE) -> None:
        """Update state with predictions and targets."""
        preds_dict, target_dict = _squad_input_check(preds, target)
        f1_score, exact_match, total = _squad_update(preds_dict, target_dict)
        self.f1_score += f1_score
        self.exact_match += exact_match
        self.total += total

    def compute(self) -> dict[str, Tensor]:
        """Aggregate the F1 Score and Exact match for the batch."""
        return _squad_compute(self.f1_score, self.exact_match, self.total)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> from torchmetrics.text import SQuAD
            >>> metric = SQuAD()
            >>> preds = [{"prediction_text": "1976", "id": "56e10a3be3433e1400422b22"}]
            >>> target = [{"answers": {"answer_start": [97], "text": ["1976"]}, "id": "56e10a3be3433e1400422b22"}]
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> from torchmetrics.text import SQuAD
            >>> metric = SQuAD()
            >>> preds = [{"prediction_text": "1976", "id": "56e10a3be3433e1400422b22"}]
            >>> target = [{"answers": {"answer_start": [97], "text": ["1976"]}, "id": "56e10a3be3433e1400422b22"}]
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(preds, target))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)