jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# referenced from
# Library Name: torchtext
# Authors: torchtext authors and @sluks
# Date: 2021-11-25
# Link:
import itertools
from collections.abc import Iterator, Sequence
from typing import Any, List, Optional, Union
import torch
from torch import Tensor, tensor
from torchmetrics import Metric
from torchmetrics.functional.text.chrf import _chrf_score_compute, _chrf_score_update, _prepare_n_grams_dicts
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["CHRFScore.plot"]
_N_GRAM_LEVELS = ("char", "word")
_TEXT_LEVELS = ("preds", "target", "matching")
_DICT_STATES_NAMES = (
"total_preds_char_n_grams",
"total_preds_word_n_grams",
"total_target_char_n_grams",
"total_target_word_n_grams",
"total_matching_char_n_grams",
"total_matching_word_n_grams",
)
_DICT_STATES_TYPES = tuple[
dict[int, Tensor], dict[int, Tensor], dict[int, Tensor], dict[int, Tensor], dict[int, Tensor], dict[int, Tensor]
]
class CHRFScore(Metric):
"""Calculate `chrf score`_ of machine translated text with one or more references.
This implementation supports both ChrF score computation introduced in `chrF score`_ and `chrF++ score`_ introduced
in `chrF++ score`_. This implementation follows the implementations from https://github.com/m-popovic/chrF and
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/chrf.py.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~Sequence`): An iterable of hypothesis corpus
- ``target`` (:class:`~Sequence`): An iterable of iterables of reference corpus
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``chrf`` (:class:`~torch.Tensor`): If `return_sentence_level_score=True` return a list of sentence-level
chrF/chrF++ scores, else return a corpus-level chrF/chrF++ score
Args:
n_char_order: A character n-gram order. If ``n_char_order=6``, the metrics refers to the official chrF/chrF++.
n_word_order: A word n-gram order. If ``n_word_order=2``, the metric refers to the official chrF++.
If ``n_word_order=0``, the metric is equivalent to the original ChrF.
beta: parameter determining an importance of recall w.r.t. precision. If ``beta=1``, their importance is equal.
lowercase: An indication whether to enable case-insensitivity.
whitespace: An indication whether keep whitespaces during n-gram extraction.
return_sentence_level_score: An indication whether a sentence-level chrF/chrF++ score to be returned.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``n_char_order`` is not an integer greater than or equal to 1.
ValueError:
If ``n_word_order`` is not an integer greater than or equal to 0.
ValueError:
If ``beta`` is smaller than 0.
Example:
>>> from torchmetrics.text import CHRFScore
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> chrf = CHRFScore()
>>> chrf(preds, target)
tensor(0.8640)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = True
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
sentence_chrf_score: Optional[List[Tensor]] = None
def __init__(
self,
n_char_order: int = 6,
n_word_order: int = 2,
beta: float = 2.0,
lowercase: bool = False,
whitespace: bool = False,
return_sentence_level_score: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if not isinstance(n_char_order, int) or n_char_order < 1:
raise ValueError("Expected argument `n_char_order` to be an integer greater than or equal to 1.")
self.n_char_order = n_char_order
if not isinstance(n_word_order, int) or n_word_order < 0:
raise ValueError("Expected argument `n_word_order` to be an integer greater than or equal to 0.")
self.n_word_order = n_word_order
if beta < 0:
raise ValueError("Expected argument `beta` to be greater than 0.")
self.beta = beta
self.lowercase = lowercase
self.whitespace = whitespace
self.return_sentence_level_score = return_sentence_level_score
self.n_order = float(n_char_order + n_word_order)
# Adding state dynamically
for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator():
for n in range(1, n_gram_order + 1):
state_name = self._get_state_name(text, n_gram_level, n)
self.add_state(state_name, tensor(0.0), dist_reduce_fx="sum")
if self.return_sentence_level_score:
self.add_state("sentence_chrf_score", [], dist_reduce_fx="cat")
def update(self, preds: Sequence[str], target: Sequence[Sequence[str]]) -> None:
"""Update state with predictions and targets."""
n_grams_dicts_tuple = _chrf_score_update(
preds,
target,
*self._convert_states_to_dicts(),
self.n_char_order,
self.n_word_order,
self.n_order,
self.beta,
self.lowercase,
self.whitespace,
self.sentence_chrf_score if self.return_sentence_level_score else None,
)
self._update_states_from_dicts(n_grams_dicts_tuple[:-1])
if self.sentence_chrf_score is not None:
self.sentence_chrf_score = n_grams_dicts_tuple[-1]
def compute(self) -> Union[Tensor, tuple[Tensor, Tensor]]:
"""Calculate chrF/chrF++ score."""
if self.sentence_chrf_score is not None:
return (
_chrf_score_compute(*self._convert_states_to_dicts(), self.n_order, self.beta),
torch.cat(self.sentence_chrf_score),
)
return _chrf_score_compute(*self._convert_states_to_dicts(), self.n_order, self.beta)
def _convert_states_to_dicts(self) -> _DICT_STATES_TYPES:
"""Convert global metric states to the n-gram dictionaries to be passed in ``_chrf_score_update``."""
n_grams_dicts: dict[str, dict[int, Tensor]] = dict(
zip(_DICT_STATES_NAMES, _prepare_n_grams_dicts(self.n_char_order, self.n_word_order))
)
for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator():
for n in range(1, n_gram_order + 1):
dict_name = self._get_dict_name(text, n_gram_level)
state_name = self._get_state_name(text, n_gram_level, n)
n_grams_dicts[dict_name][n] = getattr(self, state_name)
return tuple(n_grams_dicts.values()) # type: ignore
def _update_states_from_dicts(self, n_grams_dicts_tuple: _DICT_STATES_TYPES) -> None:
"""Update global metric states based on the n-gram dictionaries calculated on the current batch."""
n_grams_dicts = dict(zip(_DICT_STATES_NAMES, n_grams_dicts_tuple))
for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator():
for n in range(1, n_gram_order + 1):
dict_name = self._get_dict_name(text, n_gram_level)
state_name = self._get_state_name(text, n_gram_level, n)
setattr(self, state_name, n_grams_dicts[dict_name][n])
@staticmethod
def _get_dict_name(text: str, n_gram_level: str) -> str:
"""Return a dictionary name w.r.t input args."""
return f"total_{text}_{n_gram_level}_n_grams"
@staticmethod
def _get_state_name(text: str, n_gram_level: str, n: int) -> str:
"""Return a metric state name w.r.t input args."""
return f"total_{text}_{n_gram_level}_{n}_grams"
def _get_text_n_gram_iterator(self) -> Iterator[tuple[tuple[str, int], str]]:
"""Get iterator over char/word and reference/hypothesis/matching n-gram level."""
return itertools.product(zip(_N_GRAM_LEVELS, [self.n_char_order, self.n_word_order]), _TEXT_LEVELS)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torchmetrics.text import CHRFScore
>>> metric = CHRFScore()
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torchmetrics.text import CHRFScore
>>> metric = CHRFScore()
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)