File size: 10,490 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# referenced from
# Library Name: torchtext
# Authors: torchtext authors and @sluks
# Date: 2021-11-25
# Link:
import itertools
from collections.abc import Iterator, Sequence
from typing import Any, List, Optional, Union
import torch
from torch import Tensor, tensor
from torchmetrics import Metric
from torchmetrics.functional.text.chrf import _chrf_score_compute, _chrf_score_update, _prepare_n_grams_dicts
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["CHRFScore.plot"]
_N_GRAM_LEVELS = ("char", "word")
_TEXT_LEVELS = ("preds", "target", "matching")
_DICT_STATES_NAMES = (
"total_preds_char_n_grams",
"total_preds_word_n_grams",
"total_target_char_n_grams",
"total_target_word_n_grams",
"total_matching_char_n_grams",
"total_matching_word_n_grams",
)
_DICT_STATES_TYPES = tuple[
dict[int, Tensor], dict[int, Tensor], dict[int, Tensor], dict[int, Tensor], dict[int, Tensor], dict[int, Tensor]
]
class CHRFScore(Metric):
"""Calculate `chrf score`_ of machine translated text with one or more references.
This implementation supports both ChrF score computation introduced in `chrF score`_ and `chrF++ score`_ introduced
in `chrF++ score`_. This implementation follows the implementations from https://github.com/m-popovic/chrF and
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/chrf.py.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~Sequence`): An iterable of hypothesis corpus
- ``target`` (:class:`~Sequence`): An iterable of iterables of reference corpus
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``chrf`` (:class:`~torch.Tensor`): If `return_sentence_level_score=True` return a list of sentence-level
chrF/chrF++ scores, else return a corpus-level chrF/chrF++ score
Args:
n_char_order: A character n-gram order. If ``n_char_order=6``, the metrics refers to the official chrF/chrF++.
n_word_order: A word n-gram order. If ``n_word_order=2``, the metric refers to the official chrF++.
If ``n_word_order=0``, the metric is equivalent to the original ChrF.
beta: parameter determining an importance of recall w.r.t. precision. If ``beta=1``, their importance is equal.
lowercase: An indication whether to enable case-insensitivity.
whitespace: An indication whether keep whitespaces during n-gram extraction.
return_sentence_level_score: An indication whether a sentence-level chrF/chrF++ score to be returned.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``n_char_order`` is not an integer greater than or equal to 1.
ValueError:
If ``n_word_order`` is not an integer greater than or equal to 0.
ValueError:
If ``beta`` is smaller than 0.
Example:
>>> from torchmetrics.text import CHRFScore
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> chrf = CHRFScore()
>>> chrf(preds, target)
tensor(0.8640)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = True
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
sentence_chrf_score: Optional[List[Tensor]] = None
def __init__(
self,
n_char_order: int = 6,
n_word_order: int = 2,
beta: float = 2.0,
lowercase: bool = False,
whitespace: bool = False,
return_sentence_level_score: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if not isinstance(n_char_order, int) or n_char_order < 1:
raise ValueError("Expected argument `n_char_order` to be an integer greater than or equal to 1.")
self.n_char_order = n_char_order
if not isinstance(n_word_order, int) or n_word_order < 0:
raise ValueError("Expected argument `n_word_order` to be an integer greater than or equal to 0.")
self.n_word_order = n_word_order
if beta < 0:
raise ValueError("Expected argument `beta` to be greater than 0.")
self.beta = beta
self.lowercase = lowercase
self.whitespace = whitespace
self.return_sentence_level_score = return_sentence_level_score
self.n_order = float(n_char_order + n_word_order)
# Adding state dynamically
for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator():
for n in range(1, n_gram_order + 1):
state_name = self._get_state_name(text, n_gram_level, n)
self.add_state(state_name, tensor(0.0), dist_reduce_fx="sum")
if self.return_sentence_level_score:
self.add_state("sentence_chrf_score", [], dist_reduce_fx="cat")
def update(self, preds: Sequence[str], target: Sequence[Sequence[str]]) -> None:
"""Update state with predictions and targets."""
n_grams_dicts_tuple = _chrf_score_update(
preds,
target,
*self._convert_states_to_dicts(),
self.n_char_order,
self.n_word_order,
self.n_order,
self.beta,
self.lowercase,
self.whitespace,
self.sentence_chrf_score if self.return_sentence_level_score else None,
)
self._update_states_from_dicts(n_grams_dicts_tuple[:-1])
if self.sentence_chrf_score is not None:
self.sentence_chrf_score = n_grams_dicts_tuple[-1]
def compute(self) -> Union[Tensor, tuple[Tensor, Tensor]]:
"""Calculate chrF/chrF++ score."""
if self.sentence_chrf_score is not None:
return (
_chrf_score_compute(*self._convert_states_to_dicts(), self.n_order, self.beta),
torch.cat(self.sentence_chrf_score),
)
return _chrf_score_compute(*self._convert_states_to_dicts(), self.n_order, self.beta)
def _convert_states_to_dicts(self) -> _DICT_STATES_TYPES:
"""Convert global metric states to the n-gram dictionaries to be passed in ``_chrf_score_update``."""
n_grams_dicts: dict[str, dict[int, Tensor]] = dict(
zip(_DICT_STATES_NAMES, _prepare_n_grams_dicts(self.n_char_order, self.n_word_order))
)
for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator():
for n in range(1, n_gram_order + 1):
dict_name = self._get_dict_name(text, n_gram_level)
state_name = self._get_state_name(text, n_gram_level, n)
n_grams_dicts[dict_name][n] = getattr(self, state_name)
return tuple(n_grams_dicts.values()) # type: ignore
def _update_states_from_dicts(self, n_grams_dicts_tuple: _DICT_STATES_TYPES) -> None:
"""Update global metric states based on the n-gram dictionaries calculated on the current batch."""
n_grams_dicts = dict(zip(_DICT_STATES_NAMES, n_grams_dicts_tuple))
for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator():
for n in range(1, n_gram_order + 1):
dict_name = self._get_dict_name(text, n_gram_level)
state_name = self._get_state_name(text, n_gram_level, n)
setattr(self, state_name, n_grams_dicts[dict_name][n])
@staticmethod
def _get_dict_name(text: str, n_gram_level: str) -> str:
"""Return a dictionary name w.r.t input args."""
return f"total_{text}_{n_gram_level}_n_grams"
@staticmethod
def _get_state_name(text: str, n_gram_level: str, n: int) -> str:
"""Return a metric state name w.r.t input args."""
return f"total_{text}_{n_gram_level}_{n}_grams"
def _get_text_n_gram_iterator(self) -> Iterator[tuple[tuple[str, int], str]]:
"""Get iterator over char/word and reference/hypothesis/matching n-gram level."""
return itertools.product(zip(_N_GRAM_LEVELS, [self.n_char_order, self.n_word_order]), _TEXT_LEVELS)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torchmetrics.text import CHRFScore
>>> metric = CHRFScore()
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torchmetrics.text import CHRFScore
>>> metric = CHRFScore()
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|