|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics import Metric |
|
from torchmetrics.functional.shape.procrustes import procrustes_disparity |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["ProcrustesDisparity.plot"] |
|
|
|
|
|
class ProcrustesDisparity(Metric): |
|
r"""Compute the `Procrustes Disparity`_. |
|
|
|
The Procrustes Disparity is defined as the sum of the squared differences between two datasets after |
|
applying a Procrustes transformation. The Procrustes Disparity is useful to compare two datasets |
|
that are similar but not aligned. |
|
|
|
The metric works similar to ``scipy.spatial.procrustes`` but for batches of data points. The disparity is |
|
aggregated over the batch, thus to get the individual disparities please use the functional version of this |
|
metric: ``torchmetrics.functional.shape.procrustes.procrustes_disparity``. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``point_cloud1`` (torch.Tensor): A tensor of shape ``(N, M, D)`` with ``N`` being the batch size, |
|
``M`` the number of data points and ``D`` the dimensionality of the data points. |
|
- ``point_cloud2`` (torch.Tensor): A tensor of shape ``(N, M, D)`` with ``N`` being the batch size, |
|
``M`` the number of data points and ``D`` the dimensionality of the data points. |
|
|
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``gds`` (:class:`~torch.Tensor`): A scalar tensor with the Procrustes Disparity. |
|
|
|
Args: |
|
reduction: Determines whether to return the mean disparity or the sum of the disparities. |
|
Can be one of ``"mean"`` or ``"sum"``. |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Raises: |
|
ValueError: If ``average`` is not one of ``"mean"`` or ``"sum"``. |
|
|
|
Example: |
|
>>> from torch import randn |
|
>>> from torchmetrics.shape import ProcrustesDisparity |
|
>>> metric = ProcrustesDisparity() |
|
>>> point_cloud1 = randn(10, 50, 2) |
|
>>> point_cloud2 = randn(10, 50, 2) |
|
>>> metric(point_cloud1, point_cloud2) |
|
tensor(0.9770) |
|
|
|
""" |
|
|
|
disparity: Tensor |
|
total: Tensor |
|
full_state_update: bool = False |
|
is_differentiable: bool = False |
|
higher_is_better: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def __init__(self, reduction: Literal["mean", "sum"] = "mean", **kwargs: Any) -> None: |
|
super().__init__(**kwargs) |
|
if reduction not in ("mean", "sum"): |
|
raise ValueError(f"Argument `reduction` must be one of ['mean', 'sum'], got {reduction}") |
|
self.reduction = reduction |
|
self.add_state("disparity", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") |
|
|
|
def update(self, point_cloud1: torch.Tensor, point_cloud2: torch.Tensor) -> None: |
|
"""Update the Procrustes Disparity with the given datasets.""" |
|
disparity: Tensor = procrustes_disparity(point_cloud1, point_cloud2) |
|
self.disparity += disparity.sum() |
|
self.total += disparity.numel() |
|
|
|
def compute(self) -> torch.Tensor: |
|
"""Computes the Procrustes Disparity.""" |
|
if self.reduction == "mean": |
|
return self.disparity / self.total |
|
return self.disparity |
|
|
|
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.shape import ProcrustesDisparity |
|
>>> metric = ProcrustesDisparity() |
|
>>> metric.update(torch.randn(10, 50, 2), torch.randn(10, 50, 2)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.shape import ProcrustesDisparity |
|
>>> metric = ProcrustesDisparity() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.randn(10, 50, 2), torch.randn(10, 50, 2))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|