jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics import Metric
from torchmetrics.functional.shape.procrustes import procrustes_disparity
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["ProcrustesDisparity.plot"]
class ProcrustesDisparity(Metric):
r"""Compute the `Procrustes Disparity`_.
The Procrustes Disparity is defined as the sum of the squared differences between two datasets after
applying a Procrustes transformation. The Procrustes Disparity is useful to compare two datasets
that are similar but not aligned.
The metric works similar to ``scipy.spatial.procrustes`` but for batches of data points. The disparity is
aggregated over the batch, thus to get the individual disparities please use the functional version of this
metric: ``torchmetrics.functional.shape.procrustes.procrustes_disparity``.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``point_cloud1`` (torch.Tensor): A tensor of shape ``(N, M, D)`` with ``N`` being the batch size,
``M`` the number of data points and ``D`` the dimensionality of the data points.
- ``point_cloud2`` (torch.Tensor): A tensor of shape ``(N, M, D)`` with ``N`` being the batch size,
``M`` the number of data points and ``D`` the dimensionality of the data points.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``gds`` (:class:`~torch.Tensor`): A scalar tensor with the Procrustes Disparity.
Args:
reduction: Determines whether to return the mean disparity or the sum of the disparities.
Can be one of ``"mean"`` or ``"sum"``.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError: If ``average`` is not one of ``"mean"`` or ``"sum"``.
Example:
>>> from torch import randn
>>> from torchmetrics.shape import ProcrustesDisparity
>>> metric = ProcrustesDisparity()
>>> point_cloud1 = randn(10, 50, 2)
>>> point_cloud2 = randn(10, 50, 2)
>>> metric(point_cloud1, point_cloud2)
tensor(0.9770)
"""
disparity: Tensor
total: Tensor
full_state_update: bool = False
is_differentiable: bool = False
higher_is_better: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(self, reduction: Literal["mean", "sum"] = "mean", **kwargs: Any) -> None:
super().__init__(**kwargs)
if reduction not in ("mean", "sum"):
raise ValueError(f"Argument `reduction` must be one of ['mean', 'sum'], got {reduction}")
self.reduction = reduction
self.add_state("disparity", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, point_cloud1: torch.Tensor, point_cloud2: torch.Tensor) -> None:
"""Update the Procrustes Disparity with the given datasets."""
disparity: Tensor = procrustes_disparity(point_cloud1, point_cloud2) # type: ignore[assignment]
self.disparity += disparity.sum()
self.total += disparity.numel()
def compute(self) -> torch.Tensor:
"""Computes the Procrustes Disparity."""
if self.reduction == "mean":
return self.disparity / self.total
return self.disparity
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.shape import ProcrustesDisparity
>>> metric = ProcrustesDisparity()
>>> metric.update(torch.randn(10, 50, 2), torch.randn(10, 50, 2))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.shape import ProcrustesDisparity
>>> metric = ProcrustesDisparity()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.randn(10, 50, 2), torch.randn(10, 50, 2)))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)