# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union import torch from torch import Tensor from typing_extensions import Literal from torchmetrics import Metric from torchmetrics.functional.shape.procrustes import procrustes_disparity from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["ProcrustesDisparity.plot"] class ProcrustesDisparity(Metric): r"""Compute the `Procrustes Disparity`_. The Procrustes Disparity is defined as the sum of the squared differences between two datasets after applying a Procrustes transformation. The Procrustes Disparity is useful to compare two datasets that are similar but not aligned. The metric works similar to ``scipy.spatial.procrustes`` but for batches of data points. The disparity is aggregated over the batch, thus to get the individual disparities please use the functional version of this metric: ``torchmetrics.functional.shape.procrustes.procrustes_disparity``. As input to ``forward`` and ``update`` the metric accepts the following input: - ``point_cloud1`` (torch.Tensor): A tensor of shape ``(N, M, D)`` with ``N`` being the batch size, ``M`` the number of data points and ``D`` the dimensionality of the data points. - ``point_cloud2`` (torch.Tensor): A tensor of shape ``(N, M, D)`` with ``N`` being the batch size, ``M`` the number of data points and ``D`` the dimensionality of the data points. As output to ``forward`` and ``compute`` the metric returns the following output: - ``gds`` (:class:`~torch.Tensor`): A scalar tensor with the Procrustes Disparity. Args: reduction: Determines whether to return the mean disparity or the sum of the disparities. Can be one of ``"mean"`` or ``"sum"``. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Raises: ValueError: If ``average`` is not one of ``"mean"`` or ``"sum"``. Example: >>> from torch import randn >>> from torchmetrics.shape import ProcrustesDisparity >>> metric = ProcrustesDisparity() >>> point_cloud1 = randn(10, 50, 2) >>> point_cloud2 = randn(10, 50, 2) >>> metric(point_cloud1, point_cloud2) tensor(0.9770) """ disparity: Tensor total: Tensor full_state_update: bool = False is_differentiable: bool = False higher_is_better: bool = False plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 def __init__(self, reduction: Literal["mean", "sum"] = "mean", **kwargs: Any) -> None: super().__init__(**kwargs) if reduction not in ("mean", "sum"): raise ValueError(f"Argument `reduction` must be one of ['mean', 'sum'], got {reduction}") self.reduction = reduction self.add_state("disparity", default=torch.tensor(0.0), dist_reduce_fx="sum") self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") def update(self, point_cloud1: torch.Tensor, point_cloud2: torch.Tensor) -> None: """Update the Procrustes Disparity with the given datasets.""" disparity: Tensor = procrustes_disparity(point_cloud1, point_cloud2) # type: ignore[assignment] self.disparity += disparity.sum() self.total += disparity.numel() def compute(self) -> torch.Tensor: """Computes the Procrustes Disparity.""" if self.reduction == "mean": return self.disparity / self.total return self.disparity def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.shape import ProcrustesDisparity >>> metric = ProcrustesDisparity() >>> metric.update(torch.randn(10, 50, 2), torch.randn(10, 50, 2)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.shape import ProcrustesDisparity >>> metric = ProcrustesDisparity() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randn(10, 50, 2), torch.randn(10, 50, 2))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)