|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.regression.minkowski import _minkowski_distance_compute, _minkowski_distance_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.exceptions import TorchMetricsUserError |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["MinkowskiDistance.plot"] |
|
|
|
|
|
class MinkowskiDistance(Metric): |
|
r"""Compute `Minkowski Distance`_. |
|
|
|
.. math:: |
|
d_{\text{Minkowski}} = \sum_{i}^N (| y_i - \hat{y_i} |^p)^\frac{1}{p} |
|
|
|
where |
|
:math: `y` is a tensor of target values, |
|
:math: `\hat{y}` is a tensor of predictions, |
|
:math: `\p` is a non-negative integer or floating-point number |
|
|
|
This metric can be seen as generalized version of the standard euclidean distance which corresponds to minkowski |
|
distance with p=2. |
|
|
|
Args: |
|
p: int or float larger than 1, exponent to which the difference between preds and target is to be raised |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torchmetrics.regression import MinkowskiDistance |
|
>>> target = tensor([1.0, 2.8, 3.5, 4.5]) |
|
>>> preds = tensor([6.1, 2.11, 3.1, 5.6]) |
|
>>> minkowski_distance = MinkowskiDistance(3) |
|
>>> minkowski_distance(preds, target) |
|
tensor(5.1220) |
|
|
|
""" |
|
|
|
is_differentiable: Optional[bool] = True |
|
higher_is_better: Optional[bool] = False |
|
full_state_update: Optional[bool] = False |
|
plot_lower_bound: float = 0.0 |
|
|
|
minkowski_dist_sum: Tensor |
|
|
|
def __init__(self, p: float, **kwargs: Any) -> None: |
|
super().__init__(**kwargs) |
|
if not (isinstance(p, (float, int)) and p >= 1): |
|
raise TorchMetricsUserError(f"Argument ``p`` must be a float or int greater than 1, but got {p}") |
|
|
|
self.p = p |
|
self.add_state("minkowski_dist_sum", default=tensor(0.0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, targets: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
minkowski_dist_sum = _minkowski_distance_update(preds, targets, self.p) |
|
self.minkowski_dist_sum += minkowski_dist_sum |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
return _minkowski_distance_compute(self.minkowski_dist_sum, self.p) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import MinkowskiDistance |
|
>>> metric = MinkowskiDistance(p=3) |
|
>>> metric.update(randn(10,), randn(10,)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import MinkowskiDistance |
|
>>> metric = MinkowskiDistance(p=3) |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,), randn(10,))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|