# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union from torch import Tensor, tensor from torchmetrics.functional.regression.minkowski import _minkowski_distance_compute, _minkowski_distance_update from torchmetrics.metric import Metric from torchmetrics.utilities.exceptions import TorchMetricsUserError from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["MinkowskiDistance.plot"] class MinkowskiDistance(Metric): r"""Compute `Minkowski Distance`_. .. math:: d_{\text{Minkowski}} = \sum_{i}^N (| y_i - \hat{y_i} |^p)^\frac{1}{p} where :math: `y` is a tensor of target values, :math: `\hat{y}` is a tensor of predictions, :math: `\p` is a non-negative integer or floating-point number This metric can be seen as generalized version of the standard euclidean distance which corresponds to minkowski distance with p=2. Args: p: int or float larger than 1, exponent to which the difference between preds and target is to be raised kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example: >>> from torchmetrics.regression import MinkowskiDistance >>> target = tensor([1.0, 2.8, 3.5, 4.5]) >>> preds = tensor([6.1, 2.11, 3.1, 5.6]) >>> minkowski_distance = MinkowskiDistance(3) >>> minkowski_distance(preds, target) tensor(5.1220) """ is_differentiable: Optional[bool] = True higher_is_better: Optional[bool] = False full_state_update: Optional[bool] = False plot_lower_bound: float = 0.0 minkowski_dist_sum: Tensor def __init__(self, p: float, **kwargs: Any) -> None: super().__init__(**kwargs) if not (isinstance(p, (float, int)) and p >= 1): raise TorchMetricsUserError(f"Argument ``p`` must be a float or int greater than 1, but got {p}") self.p = p self.add_state("minkowski_dist_sum", default=tensor(0.0), dist_reduce_fx="sum") def update(self, preds: Tensor, targets: Tensor) -> None: """Update state with predictions and targets.""" minkowski_dist_sum = _minkowski_distance_update(preds, targets, self.p) self.minkowski_dist_sum += minkowski_dist_sum def compute(self) -> Tensor: """Compute metric.""" return _minkowski_distance_compute(self.minkowski_dist_sum, self.p) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> from torch import randn >>> # Example plotting a single value >>> from torchmetrics.regression import MinkowskiDistance >>> metric = MinkowskiDistance(p=3) >>> metric.update(randn(10,), randn(10,)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> from torch import randn >>> # Example plotting multiple values >>> from torchmetrics.regression import MinkowskiDistance >>> metric = MinkowskiDistance(p=3) >>> values = [] >>> for _ in range(10): ... values.append(metric(randn(10,), randn(10,))) >>> fig, ax = metric.plot(values) """ return self._plot(val, ax)