|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from torchmetrics.functional.regression.log_cosh import _log_cosh_error_compute, _log_cosh_error_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["LogCoshError.plot"] |
|
|
|
|
|
class LogCoshError(Metric): |
|
r"""Compute the `LogCosh Error`_. |
|
|
|
.. math:: \text{LogCoshError} = \log\left(\frac{\exp(\hat{y} - y) + \exp(\hat{y - y})}{2}\right) |
|
|
|
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Estimated labels with shape ``(batch_size,)`` |
|
or ``(batch_size, num_outputs)`` |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth labels with shape ``(batch_size,)`` |
|
or ``(batch_size, num_outputs)`` |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``log_cosh_error`` (:class:`~torch.Tensor`): A tensor with the log cosh error |
|
|
|
Args: |
|
num_outputs: Number of outputs in multioutput setting |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example (single output regression):: |
|
>>> from torchmetrics.regression import LogCoshError |
|
>>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0]) |
|
>>> target = torch.tensor([2.5, 5.0, 4.0, 8.0]) |
|
>>> log_cosh_error = LogCoshError() |
|
>>> log_cosh_error(preds, target) |
|
tensor(0.3523) |
|
|
|
Example (multi output regression):: |
|
>>> from torchmetrics.regression import LogCoshError |
|
>>> preds = torch.tensor([[3.0, 5.0, 1.2], [-2.1, 2.5, 7.0]]) |
|
>>> target = torch.tensor([[2.5, 5.0, 1.3], [0.3, 4.0, 8.0]]) |
|
>>> log_cosh_error = LogCoshError(num_outputs=3) |
|
>>> log_cosh_error(preds, target) |
|
tensor([0.9176, 0.4277, 0.2194]) |
|
|
|
""" |
|
|
|
is_differentiable = True |
|
higher_is_better = False |
|
full_state_update = False |
|
plot_lower_bound: float = 0.0 |
|
|
|
sum_log_cosh_error: Tensor |
|
total: Tensor |
|
|
|
def __init__(self, num_outputs: int = 1, **kwargs: Any) -> None: |
|
super().__init__(**kwargs) |
|
|
|
if not isinstance(num_outputs, int) and num_outputs < 1: |
|
raise ValueError(f"Expected argument `num_outputs` to be an int larger than 0, but got {num_outputs}") |
|
self.num_outputs = num_outputs |
|
self.add_state("sum_log_cosh_error", default=torch.zeros(num_outputs), dist_reduce_fx="sum") |
|
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets. |
|
|
|
Raises: |
|
ValueError: |
|
If ``preds`` or ``target`` has multiple outputs when ``num_outputs=1`` |
|
|
|
""" |
|
sum_log_cosh_error, num_obs = _log_cosh_error_update(preds, target, self.num_outputs) |
|
self.sum_log_cosh_error += sum_log_cosh_error |
|
self.total += num_obs |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute LogCosh error over state.""" |
|
return _log_cosh_error_compute(self.sum_log_cosh_error, self.total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import LogCoshError |
|
>>> metric = LogCoshError() |
|
>>> metric.update(randn(10,), randn(10,)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import LogCoshError |
|
>>> metric = LogCoshError() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,), randn(10,))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|