# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union import torch from torch import Tensor from torchmetrics.functional.regression.log_cosh import _log_cosh_error_compute, _log_cosh_error_update from torchmetrics.metric import Metric from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["LogCoshError.plot"] class LogCoshError(Metric): r"""Compute the `LogCosh Error`_. .. math:: \text{LogCoshError} = \log\left(\frac{\exp(\hat{y} - y) + \exp(\hat{y - y})}{2}\right) Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): Estimated labels with shape ``(batch_size,)`` or ``(batch_size, num_outputs)`` - ``target`` (:class:`~torch.Tensor`): Ground truth labels with shape ``(batch_size,)`` or ``(batch_size, num_outputs)`` As output of ``forward`` and ``compute`` the metric returns the following output: - ``log_cosh_error`` (:class:`~torch.Tensor`): A tensor with the log cosh error Args: num_outputs: Number of outputs in multioutput setting kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example (single output regression):: >>> from torchmetrics.regression import LogCoshError >>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0]) >>> target = torch.tensor([2.5, 5.0, 4.0, 8.0]) >>> log_cosh_error = LogCoshError() >>> log_cosh_error(preds, target) tensor(0.3523) Example (multi output regression):: >>> from torchmetrics.regression import LogCoshError >>> preds = torch.tensor([[3.0, 5.0, 1.2], [-2.1, 2.5, 7.0]]) >>> target = torch.tensor([[2.5, 5.0, 1.3], [0.3, 4.0, 8.0]]) >>> log_cosh_error = LogCoshError(num_outputs=3) >>> log_cosh_error(preds, target) tensor([0.9176, 0.4277, 0.2194]) """ is_differentiable = True higher_is_better = False full_state_update = False plot_lower_bound: float = 0.0 sum_log_cosh_error: Tensor total: Tensor def __init__(self, num_outputs: int = 1, **kwargs: Any) -> None: super().__init__(**kwargs) if not isinstance(num_outputs, int) and num_outputs < 1: raise ValueError(f"Expected argument `num_outputs` to be an int larger than 0, but got {num_outputs}") self.num_outputs = num_outputs self.add_state("sum_log_cosh_error", default=torch.zeros(num_outputs), dist_reduce_fx="sum") self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") def update(self, preds: Tensor, target: Tensor) -> None: """Update state with predictions and targets. Raises: ValueError: If ``preds`` or ``target`` has multiple outputs when ``num_outputs=1`` """ sum_log_cosh_error, num_obs = _log_cosh_error_update(preds, target, self.num_outputs) self.sum_log_cosh_error += sum_log_cosh_error self.total += num_obs def compute(self) -> Tensor: """Compute LogCosh error over state.""" return _log_cosh_error_compute(self.sum_log_cosh_error, self.total) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> from torch import randn >>> # Example plotting a single value >>> from torchmetrics.regression import LogCoshError >>> metric = LogCoshError() >>> metric.update(randn(10,), randn(10,)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> from torch import randn >>> # Example plotting multiple values >>> from torchmetrics.regression import LogCoshError >>> metric = LogCoshError() >>> values = [] >>> for _ in range(10): ... values.append(metric(randn(10,), randn(10,))) >>> fig, ax = metric.plot(values) """ return self._plot(val, ax)