|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union |
|
|
|
from torch import Tensor |
|
|
|
from torchmetrics.functional.image.rase import relative_average_spectral_error |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["RelativeAverageSpectralError.plot"] |
|
|
|
|
|
class RelativeAverageSpectralError(Metric): |
|
"""Computes Relative Average Spectral Error (RASE) (RelativeAverageSpectralError_). |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)`` |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)`` |
|
|
|
As output of `forward` and `compute` the metric returns the following output |
|
|
|
- ``rase`` (:class:`~torch.Tensor`): returns float scalar tensor with average RASE value over sample |
|
|
|
Args: |
|
window_size: Sliding window used for rmse calculation |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Return: |
|
Relative Average Spectral Error (RASE) |
|
|
|
Example: |
|
>>> from torch import rand |
|
>>> preds = rand(4, 3, 16, 16) |
|
>>> target = rand(4, 3, 16, 16) |
|
>>> rase = RelativeAverageSpectralError() |
|
>>> rase(preds, target) |
|
tensor(5326.40...) |
|
|
|
Raises: |
|
ValueError: If ``window_size`` is not a positive integer. |
|
|
|
""" |
|
|
|
higher_is_better: bool = False |
|
is_differentiable: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
|
|
preds: List[Tensor] |
|
target: List[Tensor] |
|
|
|
def __init__( |
|
self, |
|
window_size: int = 8, |
|
**kwargs: dict[str, Any], |
|
) -> None: |
|
super().__init__(**kwargs) |
|
|
|
if not isinstance(window_size, int) or (isinstance(window_size, int) and window_size < 1): |
|
raise ValueError(f"Argument `window_size` is expected to be a positive integer, but got {window_size}") |
|
self.window_size = window_size |
|
|
|
self.add_state("preds", default=[], dist_reduce_fx="cat") |
|
self.add_state("target", default=[], dist_reduce_fx="cat") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
self.preds.append(preds) |
|
self.target.append(target) |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute Relative Average Spectral Error (RASE).""" |
|
preds = dim_zero_cat(self.preds) |
|
target = dim_zero_cat(self.target) |
|
return relative_average_spectral_error(preds, target, self.window_size) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.image import RelativeAverageSpectralError |
|
>>> metric = RelativeAverageSpectralError() |
|
>>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import rand |
|
>>> from torchmetrics.image import RelativeAverageSpectralError |
|
>>> metric = RelativeAverageSpectralError() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(rand(4, 3, 16, 16), rand(4, 3, 16, 16))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|