# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, List, Optional, Union from torch import Tensor from torchmetrics.functional.image.rase import relative_average_spectral_error from torchmetrics.metric import Metric from torchmetrics.utilities.data import dim_zero_cat from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["RelativeAverageSpectralError.plot"] class RelativeAverageSpectralError(Metric): """Computes Relative Average Spectral Error (RASE) (RelativeAverageSpectralError_). As input to ``forward`` and ``update`` the metric accepts the following input - ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)`` - ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)`` As output of `forward` and `compute` the metric returns the following output - ``rase`` (:class:`~torch.Tensor`): returns float scalar tensor with average RASE value over sample Args: window_size: Sliding window used for rmse calculation kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Return: Relative Average Spectral Error (RASE) Example: >>> from torch import rand >>> preds = rand(4, 3, 16, 16) >>> target = rand(4, 3, 16, 16) >>> rase = RelativeAverageSpectralError() >>> rase(preds, target) tensor(5326.40...) Raises: ValueError: If ``window_size`` is not a positive integer. """ higher_is_better: bool = False is_differentiable: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 preds: List[Tensor] target: List[Tensor] def __init__( self, window_size: int = 8, **kwargs: dict[str, Any], ) -> None: super().__init__(**kwargs) if not isinstance(window_size, int) or (isinstance(window_size, int) and window_size < 1): raise ValueError(f"Argument `window_size` is expected to be a positive integer, but got {window_size}") self.window_size = window_size self.add_state("preds", default=[], dist_reduce_fx="cat") self.add_state("target", default=[], dist_reduce_fx="cat") def update(self, preds: Tensor, target: Tensor) -> None: """Update state with predictions and targets.""" self.preds.append(preds) self.target.append(target) def compute(self) -> Tensor: """Compute Relative Average Spectral Error (RASE).""" preds = dim_zero_cat(self.preds) target = dim_zero_cat(self.target) return relative_average_spectral_error(preds, target, self.window_size) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.image import RelativeAverageSpectralError >>> metric = RelativeAverageSpectralError() >>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> from torch import rand >>> from torchmetrics.image import RelativeAverageSpectralError >>> metric = RelativeAverageSpectralError() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(rand(4, 3, 16, 16), rand(4, 3, 16, 16))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)