|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.image.psnrb import _psnrb_compute, _psnrb_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["PeakSignalNoiseRatioWithBlockedEffect.plot"] |
|
|
|
|
|
class PeakSignalNoiseRatioWithBlockedEffect(Metric): |
|
r"""Computes `Peak Signal to Noise Ratio With Blocked Effect`_ (PSNRB). |
|
|
|
.. math:: |
|
\text{PSNRB}(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{\text{MSE}(I, J)-\text{B}(I, J)}\right) |
|
|
|
Where :math:`\text{MSE}` denotes the `mean-squared-error`_ function. This metric is a modified version of PSNR that |
|
better supports evaluation of images with blocked artifacts, that oftens occur in compressed images. |
|
|
|
.. attention:: |
|
Metric only supports grayscale images. If you have RGB images, please convert them to grayscale first. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,1,H,W)`` |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,1,H,W)`` |
|
|
|
As output of `forward` and `compute` the metric returns the following output |
|
|
|
- ``psnrb`` (:class:`~torch.Tensor`): float scalar tensor with aggregated PSNRB value |
|
|
|
Args: |
|
block_size: integer indication the block size |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torch import rand |
|
>>> metric = PeakSignalNoiseRatioWithBlockedEffect() |
|
>>> preds = rand(2, 1, 10, 10) |
|
>>> target = rand(2, 1, 10, 10) |
|
>>> metric(preds, target) |
|
tensor(7.2893) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
|
|
sum_squared_error: Tensor |
|
total: Tensor |
|
bef: Tensor |
|
data_range: Tensor |
|
|
|
def __init__( |
|
self, |
|
block_size: int = 8, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if not isinstance(block_size, int) and block_size < 1: |
|
raise ValueError("Argument ``block_size`` should be a positive integer") |
|
self.block_size = block_size |
|
|
|
self.add_state("sum_squared_error", default=tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("total", default=tensor(0), dist_reduce_fx="sum") |
|
self.add_state("bef", default=tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("data_range", default=tensor(0), dist_reduce_fx="max") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
sum_squared_error, bef, num_obs = _psnrb_update(preds, target, block_size=self.block_size) |
|
self.sum_squared_error += sum_squared_error |
|
self.bef += bef |
|
self.total += num_obs |
|
self.data_range = torch.maximum(self.data_range, torch.max(target) - torch.min(target)) |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute peak signal-to-noise ratio over state.""" |
|
return _psnrb_compute(self.sum_squared_error, self.bef, self.total, self.data_range) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.image import PeakSignalNoiseRatioWithBlockedEffect |
|
>>> metric = PeakSignalNoiseRatioWithBlockedEffect() |
|
>>> metric.update(torch.rand(2, 1, 10, 10), torch.rand(2, 1, 10, 10)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.image import PeakSignalNoiseRatioWithBlockedEffect |
|
>>> metric = PeakSignalNoiseRatioWithBlockedEffect() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.rand(2, 1, 10, 10), torch.rand(2, 1, 10, 10))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|