jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor, tensor
from torchmetrics.functional.image.psnrb import _psnrb_compute, _psnrb_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["PeakSignalNoiseRatioWithBlockedEffect.plot"]
class PeakSignalNoiseRatioWithBlockedEffect(Metric):
r"""Computes `Peak Signal to Noise Ratio With Blocked Effect`_ (PSNRB).
.. math::
\text{PSNRB}(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{\text{MSE}(I, J)-\text{B}(I, J)}\right)
Where :math:`\text{MSE}` denotes the `mean-squared-error`_ function. This metric is a modified version of PSNR that
better supports evaluation of images with blocked artifacts, that oftens occur in compressed images.
.. attention::
Metric only supports grayscale images. If you have RGB images, please convert them to grayscale first.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,1,H,W)``
- ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,1,H,W)``
As output of `forward` and `compute` the metric returns the following output
- ``psnrb`` (:class:`~torch.Tensor`): float scalar tensor with aggregated PSNRB value
Args:
block_size: integer indication the block size
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import rand
>>> metric = PeakSignalNoiseRatioWithBlockedEffect()
>>> preds = rand(2, 1, 10, 10)
>>> target = rand(2, 1, 10, 10)
>>> metric(preds, target)
tensor(7.2893)
"""
is_differentiable: bool = True
higher_is_better: bool = True
full_state_update: bool = False
sum_squared_error: Tensor
total: Tensor
bef: Tensor
data_range: Tensor
def __init__(
self,
block_size: int = 8,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if not isinstance(block_size, int) and block_size < 1:
raise ValueError("Argument ``block_size`` should be a positive integer")
self.block_size = block_size
self.add_state("sum_squared_error", default=tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=tensor(0), dist_reduce_fx="sum")
self.add_state("bef", default=tensor(0.0), dist_reduce_fx="sum")
self.add_state("data_range", default=tensor(0), dist_reduce_fx="max")
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
sum_squared_error, bef, num_obs = _psnrb_update(preds, target, block_size=self.block_size)
self.sum_squared_error += sum_squared_error
self.bef += bef
self.total += num_obs
self.data_range = torch.maximum(self.data_range, torch.max(target) - torch.min(target))
def compute(self) -> Tensor:
"""Compute peak signal-to-noise ratio over state."""
return _psnrb_compute(self.sum_squared_error, self.bef, self.total, self.data_range)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image import PeakSignalNoiseRatioWithBlockedEffect
>>> metric = PeakSignalNoiseRatioWithBlockedEffect()
>>> metric.update(torch.rand(2, 1, 10, 10), torch.rand(2, 1, 10, 10))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image import PeakSignalNoiseRatioWithBlockedEffect
>>> metric = PeakSignalNoiseRatioWithBlockedEffect()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.rand(2, 1, 10, 10), torch.rand(2, 1, 10, 10)))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)