# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union import torch from torch import Tensor, tensor from torchmetrics.functional.image.psnrb import _psnrb_compute, _psnrb_update from torchmetrics.metric import Metric from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["PeakSignalNoiseRatioWithBlockedEffect.plot"] class PeakSignalNoiseRatioWithBlockedEffect(Metric): r"""Computes `Peak Signal to Noise Ratio With Blocked Effect`_ (PSNRB). .. math:: \text{PSNRB}(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{\text{MSE}(I, J)-\text{B}(I, J)}\right) Where :math:`\text{MSE}` denotes the `mean-squared-error`_ function. This metric is a modified version of PSNR that better supports evaluation of images with blocked artifacts, that oftens occur in compressed images. .. attention:: Metric only supports grayscale images. If you have RGB images, please convert them to grayscale first. As input to ``forward`` and ``update`` the metric accepts the following input - ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,1,H,W)`` - ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,1,H,W)`` As output of `forward` and `compute` the metric returns the following output - ``psnrb`` (:class:`~torch.Tensor`): float scalar tensor with aggregated PSNRB value Args: block_size: integer indication the block size kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example: >>> from torch import rand >>> metric = PeakSignalNoiseRatioWithBlockedEffect() >>> preds = rand(2, 1, 10, 10) >>> target = rand(2, 1, 10, 10) >>> metric(preds, target) tensor(7.2893) """ is_differentiable: bool = True higher_is_better: bool = True full_state_update: bool = False sum_squared_error: Tensor total: Tensor bef: Tensor data_range: Tensor def __init__( self, block_size: int = 8, **kwargs: Any, ) -> None: super().__init__(**kwargs) if not isinstance(block_size, int) and block_size < 1: raise ValueError("Argument ``block_size`` should be a positive integer") self.block_size = block_size self.add_state("sum_squared_error", default=tensor(0.0), dist_reduce_fx="sum") self.add_state("total", default=tensor(0), dist_reduce_fx="sum") self.add_state("bef", default=tensor(0.0), dist_reduce_fx="sum") self.add_state("data_range", default=tensor(0), dist_reduce_fx="max") def update(self, preds: Tensor, target: Tensor) -> None: """Update state with predictions and targets.""" sum_squared_error, bef, num_obs = _psnrb_update(preds, target, block_size=self.block_size) self.sum_squared_error += sum_squared_error self.bef += bef self.total += num_obs self.data_range = torch.maximum(self.data_range, torch.max(target) - torch.min(target)) def compute(self) -> Tensor: """Compute peak signal-to-noise ratio over state.""" return _psnrb_compute(self.sum_squared_error, self.bef, self.total, self.data_range) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.image import PeakSignalNoiseRatioWithBlockedEffect >>> metric = PeakSignalNoiseRatioWithBlockedEffect() >>> metric.update(torch.rand(2, 1, 10, 10), torch.rand(2, 1, 10, 10)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.image import PeakSignalNoiseRatioWithBlockedEffect >>> metric = PeakSignalNoiseRatioWithBlockedEffect() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.rand(2, 1, 10, 10), torch.rand(2, 1, 10, 10))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)