jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.image.ergas import _ergas_compute, _ergas_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["ErrorRelativeGlobalDimensionlessSynthesis.plot"]
class ErrorRelativeGlobalDimensionlessSynthesis(Metric):
r"""Calculate the `Error relative global dimensionless synthesis`_ (ERGAS) metric.
This metric is used to calculate the accuracy of Pan sharpened image considering normalized average error of each
band of the result image. It is defined as:
.. math::
ERGAS = \frac{100}{r} \cdot \sqrt{\frac{1}{N} \sum_{k=1}^{N} \frac{RMSE(B_k)^2}{\mu_k^2}}
where :math:`r=h/l` denote the ratio in spatial resolution (pixel size) between the high and low resolution images.
:math:`N` is the number of spectral bands, :math:`RMSE(B_k)` is the root mean square error of the k-th band between
low and high resolution images, and :math:`\\mu_k` is the mean value of the k-th band of the reference image.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): Predictions from model
- ``target`` (:class:`~torch.Tensor`): Ground truth values
As output of `forward` and `compute` the metric returns the following output
- ``ergas`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average ERGAS
value over sample else returns tensor of shape ``(N,)`` with ERGAS values per sample
Args:
ratio: ratio of high resolution to low resolution.
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'`` or ``None``: no reduction will be applied
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import rand
>>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis
>>> preds = rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> ergas = ErrorRelativeGlobalDimensionlessSynthesis()
>>> ergas(preds, target).round()
tensor(10.)
"""
higher_is_better: bool = False
is_differentiable: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
preds: List[Tensor]
target: List[Tensor]
def __init__(
self,
ratio: float = 4,
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
rank_zero_warn(
"Metric `UniversalImageQualityIndex` will save all targets and"
" predictions in buffer. For large datasets this may lead"
" to large memory footprint."
)
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
self.ratio = ratio
self.reduction = reduction
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
preds, target = _ergas_update(preds, target)
self.preds.append(preds)
self.target.append(target)
def compute(self) -> Tensor:
"""Compute explained variance over state."""
preds = dim_zero_cat(self.preds)
target = dim_zero_cat(self.target)
return _ergas_compute(preds, target, self.ratio, self.reduction)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torch import rand
>>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis
>>> preds = rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> metric = ErrorRelativeGlobalDimensionlessSynthesis()
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torch import rand
>>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis
>>> preds = rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> metric = ErrorRelativeGlobalDimensionlessSynthesis()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)