File size: 6,240 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.image.ergas import _ergas_compute, _ergas_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["ErrorRelativeGlobalDimensionlessSynthesis.plot"]
class ErrorRelativeGlobalDimensionlessSynthesis(Metric):
r"""Calculate the `Error relative global dimensionless synthesis`_ (ERGAS) metric.
This metric is used to calculate the accuracy of Pan sharpened image considering normalized average error of each
band of the result image. It is defined as:
.. math::
ERGAS = \frac{100}{r} \cdot \sqrt{\frac{1}{N} \sum_{k=1}^{N} \frac{RMSE(B_k)^2}{\mu_k^2}}
where :math:`r=h/l` denote the ratio in spatial resolution (pixel size) between the high and low resolution images.
:math:`N` is the number of spectral bands, :math:`RMSE(B_k)` is the root mean square error of the k-th band between
low and high resolution images, and :math:`\\mu_k` is the mean value of the k-th band of the reference image.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): Predictions from model
- ``target`` (:class:`~torch.Tensor`): Ground truth values
As output of `forward` and `compute` the metric returns the following output
- ``ergas`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average ERGAS
value over sample else returns tensor of shape ``(N,)`` with ERGAS values per sample
Args:
ratio: ratio of high resolution to low resolution.
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'`` or ``None``: no reduction will be applied
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import rand
>>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis
>>> preds = rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> ergas = ErrorRelativeGlobalDimensionlessSynthesis()
>>> ergas(preds, target).round()
tensor(10.)
"""
higher_is_better: bool = False
is_differentiable: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
preds: List[Tensor]
target: List[Tensor]
def __init__(
self,
ratio: float = 4,
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
rank_zero_warn(
"Metric `UniversalImageQualityIndex` will save all targets and"
" predictions in buffer. For large datasets this may lead"
" to large memory footprint."
)
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
self.ratio = ratio
self.reduction = reduction
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
preds, target = _ergas_update(preds, target)
self.preds.append(preds)
self.target.append(target)
def compute(self) -> Tensor:
"""Compute explained variance over state."""
preds = dim_zero_cat(self.preds)
target = dim_zero_cat(self.target)
return _ergas_compute(preds, target, self.ratio, self.reduction)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torch import rand
>>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis
>>> preds = rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> metric = ErrorRelativeGlobalDimensionlessSynthesis()
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torch import rand
>>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis
>>> preds = rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> metric = ErrorRelativeGlobalDimensionlessSynthesis()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|