|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from torchmetrics.utilities.checks import _check_same_shape |
|
|
|
|
|
def _mean_absolute_percentage_error_update( |
|
preds: Tensor, |
|
target: Tensor, |
|
epsilon: float = 1.17e-06, |
|
) -> tuple[Tensor, int]: |
|
"""Update and returns variables required to compute Mean Percentage Error. |
|
|
|
Check for same shape of input tensors. |
|
|
|
Args: |
|
preds: Predicted tensor |
|
target: Ground truth tensor |
|
epsilon: Specifies the lower bound for target values. Any target value below epsilon |
|
is set to epsilon (avoids ``ZeroDivisionError``). |
|
|
|
""" |
|
_check_same_shape(preds, target) |
|
|
|
abs_diff = torch.abs(preds - target) |
|
abs_per_error = abs_diff / torch.clamp(torch.abs(target), min=epsilon) |
|
|
|
sum_abs_per_error = torch.sum(abs_per_error) |
|
|
|
num_obs = target.numel() |
|
|
|
return sum_abs_per_error, num_obs |
|
|
|
|
|
def _mean_absolute_percentage_error_compute(sum_abs_per_error: Tensor, num_obs: Union[int, Tensor]) -> Tensor: |
|
"""Compute Mean Absolute Percentage Error. |
|
|
|
Args: |
|
sum_abs_per_error: Sum of absolute value of percentage errors over all observations |
|
``(percentage error = (target - prediction) / target)`` |
|
num_obs: Number of predictions or observations |
|
|
|
Example: |
|
>>> target = torch.tensor([1, 10, 1e6]) |
|
>>> preds = torch.tensor([0.9, 15, 1.2e6]) |
|
>>> sum_abs_per_error, num_obs = _mean_absolute_percentage_error_update(preds, target) |
|
>>> _mean_absolute_percentage_error_compute(sum_abs_per_error, num_obs) |
|
tensor(0.2667) |
|
|
|
""" |
|
return sum_abs_per_error / num_obs |
|
|
|
|
|
def mean_absolute_percentage_error(preds: Tensor, target: Tensor) -> Tensor: |
|
"""Compute mean absolute percentage error. |
|
|
|
Args: |
|
preds: estimated labels |
|
target: ground truth labels |
|
|
|
Return: |
|
Tensor with MAPE |
|
|
|
Note: |
|
The epsilon value is taken from `scikit-learn's implementation of MAPE`_. |
|
|
|
Example: |
|
>>> from torchmetrics.functional.regression import mean_absolute_percentage_error |
|
>>> target = torch.tensor([1, 10, 1e6]) |
|
>>> preds = torch.tensor([0.9, 15, 1.2e6]) |
|
>>> mean_absolute_percentage_error(preds, target) |
|
tensor(0.2667) |
|
|
|
""" |
|
sum_abs_per_error, num_obs = _mean_absolute_percentage_error_update(preds, target) |
|
return _mean_absolute_percentage_error_compute(sum_abs_per_error, num_obs) |
|
|