# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import torch from torch import Tensor from torchmetrics.utilities.checks import _check_same_shape def _mean_absolute_percentage_error_update( preds: Tensor, target: Tensor, epsilon: float = 1.17e-06, ) -> tuple[Tensor, int]: """Update and returns variables required to compute Mean Percentage Error. Check for same shape of input tensors. Args: preds: Predicted tensor target: Ground truth tensor epsilon: Specifies the lower bound for target values. Any target value below epsilon is set to epsilon (avoids ``ZeroDivisionError``). """ _check_same_shape(preds, target) abs_diff = torch.abs(preds - target) abs_per_error = abs_diff / torch.clamp(torch.abs(target), min=epsilon) sum_abs_per_error = torch.sum(abs_per_error) num_obs = target.numel() return sum_abs_per_error, num_obs def _mean_absolute_percentage_error_compute(sum_abs_per_error: Tensor, num_obs: Union[int, Tensor]) -> Tensor: """Compute Mean Absolute Percentage Error. Args: sum_abs_per_error: Sum of absolute value of percentage errors over all observations ``(percentage error = (target - prediction) / target)`` num_obs: Number of predictions or observations Example: >>> target = torch.tensor([1, 10, 1e6]) >>> preds = torch.tensor([0.9, 15, 1.2e6]) >>> sum_abs_per_error, num_obs = _mean_absolute_percentage_error_update(preds, target) >>> _mean_absolute_percentage_error_compute(sum_abs_per_error, num_obs) tensor(0.2667) """ return sum_abs_per_error / num_obs def mean_absolute_percentage_error(preds: Tensor, target: Tensor) -> Tensor: """Compute mean absolute percentage error. Args: preds: estimated labels target: ground truth labels Return: Tensor with MAPE Note: The epsilon value is taken from `scikit-learn's implementation of MAPE`_. Example: >>> from torchmetrics.functional.regression import mean_absolute_percentage_error >>> target = torch.tensor([1, 10, 1e6]) >>> preds = torch.tensor([0.9, 15, 1.2e6]) >>> mean_absolute_percentage_error(preds, target) tensor(0.2667) """ sum_abs_per_error, num_obs = _mean_absolute_percentage_error_update(preds, target) return _mean_absolute_percentage_error_compute(sum_abs_per_error, num_obs)