|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.pairwise.helpers import _check_input, _reduce_distance_matrix |
|
|
|
|
|
def _pairwise_euclidean_distance_update( |
|
x: Tensor, y: Optional[Tensor] = None, zero_diagonal: Optional[bool] = None |
|
) -> Tensor: |
|
"""Calculate the pairwise euclidean distance matrix. |
|
|
|
Args: |
|
x: tensor of shape ``[N,d]`` |
|
y: tensor of shape ``[M,d]`` |
|
zero_diagonal: determines if the diagonal of the distance matrix should be set to zero |
|
|
|
""" |
|
x, y, zero_diagonal = _check_input(x, y, zero_diagonal) |
|
|
|
_orig_dtype = x.dtype |
|
x = x.to(torch.float64) |
|
y = y.to(torch.float64) |
|
x_norm = (x * x).sum(dim=1, keepdim=True) |
|
y_norm = (y * y).sum(dim=1) |
|
distance = (x_norm + y_norm - 2 * x.mm(y.T)).to(_orig_dtype) |
|
if zero_diagonal: |
|
distance.fill_diagonal_(0) |
|
return distance.sqrt() |
|
|
|
|
|
def pairwise_euclidean_distance( |
|
x: Tensor, |
|
y: Optional[Tensor] = None, |
|
reduction: Literal["mean", "sum", "none", None] = None, |
|
zero_diagonal: Optional[bool] = None, |
|
) -> Tensor: |
|
r"""Calculate pairwise euclidean distances. |
|
|
|
.. math:: |
|
d_{euc}(x,y) = ||x - y||_2 = \sqrt{\sum_{d=1}^D (x_d - y_d)^2} |
|
|
|
If both :math:`x` and :math:`y` are passed in, the calculation will be performed pairwise between |
|
the rows of :math:`x` and :math:`y`. |
|
If only :math:`x` is passed in, the calculation will be performed between the rows of :math:`x`. |
|
|
|
Args: |
|
x: Tensor with shape ``[N, d]`` |
|
y: Tensor with shape ``[M, d]``, optional |
|
reduction: reduction to apply along the last dimension. Choose between `'mean'`, `'sum'` |
|
(applied along column dimension) or `'none'`, `None` for no reduction |
|
zero_diagonal: if the diagonal of the distance matrix should be set to 0. If only `x` is given |
|
this defaults to `True` else if `y` is also given it defaults to `False` |
|
|
|
Returns: |
|
A ``[N,N]`` matrix of distances if only ``x`` is given, else a ``[N,M]`` matrix |
|
|
|
Example: |
|
>>> import torch |
|
>>> from torchmetrics.functional.pairwise import pairwise_euclidean_distance |
|
>>> x = torch.tensor([[2, 3], [3, 5], [5, 8]], dtype=torch.float32) |
|
>>> y = torch.tensor([[1, 0], [2, 1]], dtype=torch.float32) |
|
>>> pairwise_euclidean_distance(x, y) |
|
tensor([[3.1623, 2.0000], |
|
[5.3852, 4.1231], |
|
[8.9443, 7.6158]]) |
|
>>> pairwise_euclidean_distance(x) |
|
tensor([[0.0000, 2.2361, 5.8310], |
|
[2.2361, 0.0000, 3.6056], |
|
[5.8310, 3.6056, 0.0000]]) |
|
|
|
""" |
|
distance = _pairwise_euclidean_distance_update(x, y, zero_diagonal) |
|
return _reduce_distance_matrix(distance, reduction) |
|
|