# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor from typing_extensions import Literal from torchmetrics.functional.pairwise.helpers import _check_input, _reduce_distance_matrix def _pairwise_euclidean_distance_update( x: Tensor, y: Optional[Tensor] = None, zero_diagonal: Optional[bool] = None ) -> Tensor: """Calculate the pairwise euclidean distance matrix. Args: x: tensor of shape ``[N,d]`` y: tensor of shape ``[M,d]`` zero_diagonal: determines if the diagonal of the distance matrix should be set to zero """ x, y, zero_diagonal = _check_input(x, y, zero_diagonal) # upcast to float64 to prevent precision issues _orig_dtype = x.dtype x = x.to(torch.float64) y = y.to(torch.float64) x_norm = (x * x).sum(dim=1, keepdim=True) y_norm = (y * y).sum(dim=1) distance = (x_norm + y_norm - 2 * x.mm(y.T)).to(_orig_dtype) if zero_diagonal: distance.fill_diagonal_(0) return distance.sqrt() def pairwise_euclidean_distance( x: Tensor, y: Optional[Tensor] = None, reduction: Literal["mean", "sum", "none", None] = None, zero_diagonal: Optional[bool] = None, ) -> Tensor: r"""Calculate pairwise euclidean distances. .. math:: d_{euc}(x,y) = ||x - y||_2 = \sqrt{\sum_{d=1}^D (x_d - y_d)^2} If both :math:`x` and :math:`y` are passed in, the calculation will be performed pairwise between the rows of :math:`x` and :math:`y`. If only :math:`x` is passed in, the calculation will be performed between the rows of :math:`x`. Args: x: Tensor with shape ``[N, d]`` y: Tensor with shape ``[M, d]``, optional reduction: reduction to apply along the last dimension. Choose between `'mean'`, `'sum'` (applied along column dimension) or `'none'`, `None` for no reduction zero_diagonal: if the diagonal of the distance matrix should be set to 0. If only `x` is given this defaults to `True` else if `y` is also given it defaults to `False` Returns: A ``[N,N]`` matrix of distances if only ``x`` is given, else a ``[N,M]`` matrix Example: >>> import torch >>> from torchmetrics.functional.pairwise import pairwise_euclidean_distance >>> x = torch.tensor([[2, 3], [3, 5], [5, 8]], dtype=torch.float32) >>> y = torch.tensor([[1, 0], [2, 1]], dtype=torch.float32) >>> pairwise_euclidean_distance(x, y) tensor([[3.1623, 2.0000], [5.3852, 4.1231], [8.9443, 7.6158]]) >>> pairwise_euclidean_distance(x) tensor([[0.0000, 2.2361, 5.8310], [2.2361, 0.0000, 3.6056], [5.8310, 3.6056, 0.0000]]) """ distance = _pairwise_euclidean_distance_update(x, y, zero_diagonal) return _reduce_distance_matrix(distance, reduction)