|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor |
|
|
|
from torchmetrics.detection.iou import IntersectionOverUnion |
|
from torchmetrics.functional.detection.diou import _diou_compute, _diou_update |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _TORCHVISION_AVAILABLE: |
|
__doctest_skip__ = ["DistanceIntersectionOverUnion", "DistanceIntersectionOverUnion.plot"] |
|
elif not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["DistanceIntersectionOverUnion.plot"] |
|
|
|
|
|
class DistanceIntersectionOverUnion(IntersectionOverUnion): |
|
r"""Computes Distance Intersection Over Union (`DIoU`_). |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values |
|
(each dictionary corresponds to a single image). Parameters that should be provided per dict: |
|
|
|
- ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes`` |
|
detection boxes of the format specified in the constructor. |
|
By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates. |
|
- ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed detection |
|
classes for the boxes. |
|
|
|
- ``target`` (:class:`~List`): A list consisting of dictionaries each containing the key-values |
|
(each dictionary corresponds to a single image). Parameters that should be provided per dict: |
|
|
|
- ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes`` ground |
|
truth boxes of the format specified in the constructor. |
|
By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates. |
|
- ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed ground truth |
|
classes for the boxes. |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``diou_dict``: A dictionary containing the following key-values: |
|
|
|
- diou: (:class:`~torch.Tensor`) with overall diou value over all classes and samples. |
|
- diou/cl_{cl}: (:class:`~torch.Tensor`), if argument ``class_metrics=True`` |
|
|
|
Args: |
|
box_format: |
|
Input format of given boxes. Supported formats are ``['xyxy', 'xywh', 'cxcywh']``. |
|
iou_thresholds: |
|
Optional IoU thresholds for evaluation. If set to `None` the threshold is ignored. |
|
class_metrics: |
|
Option to enable per-class metrics for IoU. Has a performance impact. |
|
respect_labels: |
|
Ignore values from boxes that do not have the same label as the ground truth box. Else will compute Iou |
|
between all pairs of boxes. |
|
kwargs: |
|
Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> import torch |
|
>>> from torchmetrics.detection import DistanceIntersectionOverUnion |
|
>>> preds = [ |
|
... { |
|
... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), |
|
... "scores": torch.tensor([0.236, 0.56]), |
|
... "labels": torch.tensor([4, 5]), |
|
... } |
|
... ] |
|
>>> target = [ |
|
... { |
|
... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]), |
|
... "labels": torch.tensor([5]), |
|
... } |
|
... ] |
|
>>> metric = DistanceIntersectionOverUnion() |
|
>>> metric(preds, target) |
|
{'diou': tensor(0.8611)} |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If torchvision is not installed with version 0.13.0 or newer. |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = True |
|
|
|
_iou_type: str = "diou" |
|
_invalid_val: float = -1.0 |
|
|
|
def __init__( |
|
self, |
|
box_format: str = "xyxy", |
|
iou_threshold: Optional[float] = None, |
|
class_metrics: bool = False, |
|
respect_labels: bool = True, |
|
**kwargs: Any, |
|
) -> None: |
|
if not _TORCHVISION_AVAILABLE: |
|
raise ModuleNotFoundError( |
|
f"Metric `{self._iou_type.upper()}` requires that `torchvision` is installed." |
|
" Please install with `pip install torchmetrics[detection]`." |
|
) |
|
super().__init__(box_format, iou_threshold, class_metrics, respect_labels, **kwargs) |
|
|
|
@staticmethod |
|
def _iou_update_fn(*args: Any, **kwargs: Any) -> Tensor: |
|
return _diou_update(*args, **kwargs) |
|
|
|
@staticmethod |
|
def _iou_compute_fn(*args: Any, **kwargs: Any) -> Tensor: |
|
return _diou_compute(*args, **kwargs) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting single value |
|
>>> import torch |
|
>>> from torchmetrics.detection import DistanceIntersectionOverUnion |
|
>>> preds = [ |
|
... { |
|
... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), |
|
... "scores": torch.tensor([0.236, 0.56]), |
|
... "labels": torch.tensor([4, 5]), |
|
... } |
|
... ] |
|
>>> target = [ |
|
... { |
|
... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]), |
|
... "labels": torch.tensor([5]), |
|
... } |
|
... ] |
|
>>> metric = DistanceIntersectionOverUnion() |
|
>>> metric.update(preds, target) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.detection import DistanceIntersectionOverUnion |
|
>>> preds = [ |
|
... { |
|
... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), |
|
... "scores": torch.tensor([0.236, 0.56]), |
|
... "labels": torch.tensor([4, 5]), |
|
... } |
|
... ] |
|
>>> target = lambda : [ |
|
... { |
|
... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]) + torch.randint(-10, 10, (1, 4)), |
|
... "labels": torch.tensor([5]), |
|
... } |
|
... ] |
|
>>> metric = DistanceIntersectionOverUnion() |
|
>>> vals = [] |
|
>>> for _ in range(20): |
|
... vals.append(metric(preds, target())) |
|
>>> fig_, ax_ = metric.plot(vals) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|