File size: 8,133 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
from torch import Tensor
from torchmetrics.detection.iou import IntersectionOverUnion
from torchmetrics.functional.detection.diou import _diou_compute, _diou_update
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _TORCHVISION_AVAILABLE:
__doctest_skip__ = ["DistanceIntersectionOverUnion", "DistanceIntersectionOverUnion.plot"]
elif not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["DistanceIntersectionOverUnion.plot"]
class DistanceIntersectionOverUnion(IntersectionOverUnion):
r"""Computes Distance Intersection Over Union (`DIoU`_).
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
(each dictionary corresponds to a single image). Parameters that should be provided per dict:
- ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes``
detection boxes of the format specified in the constructor.
By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
- ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed detection
classes for the boxes.
- ``target`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
(each dictionary corresponds to a single image). Parameters that should be provided per dict:
- ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes`` ground
truth boxes of the format specified in the constructor.
By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
- ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed ground truth
classes for the boxes.
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``diou_dict``: A dictionary containing the following key-values:
- diou: (:class:`~torch.Tensor`) with overall diou value over all classes and samples.
- diou/cl_{cl}: (:class:`~torch.Tensor`), if argument ``class_metrics=True``
Args:
box_format:
Input format of given boxes. Supported formats are ``['xyxy', 'xywh', 'cxcywh']``.
iou_thresholds:
Optional IoU thresholds for evaluation. If set to `None` the threshold is ignored.
class_metrics:
Option to enable per-class metrics for IoU. Has a performance impact.
respect_labels:
Ignore values from boxes that do not have the same label as the ground truth box. Else will compute Iou
between all pairs of boxes.
kwargs:
Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> import torch
>>> from torchmetrics.detection import DistanceIntersectionOverUnion
>>> preds = [
... {
... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]),
... "scores": torch.tensor([0.236, 0.56]),
... "labels": torch.tensor([4, 5]),
... }
... ]
>>> target = [
... {
... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]),
... "labels": torch.tensor([5]),
... }
... ]
>>> metric = DistanceIntersectionOverUnion()
>>> metric(preds, target)
{'diou': tensor(0.8611)}
Raises:
ModuleNotFoundError:
If torchvision is not installed with version 0.13.0 or newer.
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = True
_iou_type: str = "diou"
_invalid_val: float = -1.0
def __init__(
self,
box_format: str = "xyxy",
iou_threshold: Optional[float] = None,
class_metrics: bool = False,
respect_labels: bool = True,
**kwargs: Any,
) -> None:
if not _TORCHVISION_AVAILABLE:
raise ModuleNotFoundError(
f"Metric `{self._iou_type.upper()}` requires that `torchvision` is installed."
" Please install with `pip install torchmetrics[detection]`."
)
super().__init__(box_format, iou_threshold, class_metrics, respect_labels, **kwargs)
@staticmethod
def _iou_update_fn(*args: Any, **kwargs: Any) -> Tensor:
return _diou_update(*args, **kwargs)
@staticmethod
def _iou_compute_fn(*args: Any, **kwargs: Any) -> Tensor:
return _diou_compute(*args, **kwargs)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting single value
>>> import torch
>>> from torchmetrics.detection import DistanceIntersectionOverUnion
>>> preds = [
... {
... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]),
... "scores": torch.tensor([0.236, 0.56]),
... "labels": torch.tensor([4, 5]),
... }
... ]
>>> target = [
... {
... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]),
... "labels": torch.tensor([5]),
... }
... ]
>>> metric = DistanceIntersectionOverUnion()
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.detection import DistanceIntersectionOverUnion
>>> preds = [
... {
... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]),
... "scores": torch.tensor([0.236, 0.56]),
... "labels": torch.tensor([4, 5]),
... }
... ]
>>> target = lambda : [
... {
... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]) + torch.randint(-10, 10, (1, 4)),
... "labels": torch.tensor([5]),
... }
... ]
>>> metric = DistanceIntersectionOverUnion()
>>> vals = []
>>> for _ in range(20):
... vals.append(metric(preds, target()))
>>> fig_, ax_ = metric.plot(vals)
"""
return self._plot(val, ax)
|