|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union |
|
|
|
from torch import Tensor |
|
|
|
from torchmetrics.functional.clustering.dunn_index import dunn_index |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["DunnIndex.plot"] |
|
|
|
|
|
class DunnIndex(Metric): |
|
r"""Compute `Dunn Index`_. |
|
|
|
.. math:: |
|
DI_m = \frac{\min_{1\leq i<j\leq m} \delta(C_i,C_j)}{\max_{1\leq k\leq m} \Delta_k} |
|
|
|
Where :math:`C_i` is a cluster of tensors, :math:`C_j` is a cluster of tensors, |
|
and :math:`\delta(C_i,C_j)` is the intercluster distance metric for :math:`m` clusters. |
|
|
|
This clustering metric is an intrinsic measure, because it does not rely on ground truth labels for the evaluation. |
|
Instead it examines how well the clusters are separated from each other. The score is higher when clusters are dense |
|
and well separated, which relates to a standard concept of a cluster. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``data`` (:class:`~torch.Tensor`): float tensor with shape ``(N,d)`` with the embedded data. ``d`` is the |
|
dimensionality of the embedding space. |
|
- ``labels`` (:class:`~torch.Tensor`): single integer tensor with shape ``(N,)`` with cluster labels |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``dunn_index`` (:class:`~torch.Tensor`): A tensor with the Dunn Index |
|
|
|
Args: |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example:: |
|
>>> import torch |
|
>>> from torchmetrics.clustering import DunnIndex |
|
>>> data = torch.tensor([[0, 0], [0.5, 0], [1, 0], [0.5, 1]]) |
|
>>> labels = torch.tensor([0, 0, 0, 1]) |
|
>>> dunn_index = DunnIndex(p=2) |
|
>>> dunn_index(data, labels) |
|
tensor(2.) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
data: List[Tensor] |
|
labels: List[Tensor] |
|
|
|
def __init__(self, p: float = 2, **kwargs: Any) -> None: |
|
super().__init__(**kwargs) |
|
self.p = p |
|
|
|
self.add_state("data", default=[], dist_reduce_fx="cat") |
|
self.add_state("labels", default=[], dist_reduce_fx="cat") |
|
|
|
def update(self, data: Tensor, labels: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
self.data.append(data) |
|
self.labels.append(labels) |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute mutual information over state.""" |
|
return dunn_index(dim_zero_cat(self.data), dim_zero_cat(self.labels), self.p) |
|
|
|
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.clustering import DunnIndex |
|
>>> data = torch.tensor([[0, 0], [0.5, 0], [1, 0], [0.5, 1]]) |
|
>>> labels = torch.tensor([0, 0, 0, 1]) |
|
>>> metric = DunnIndex(p=2) |
|
>>> metric.update(data, labels) |
|
>>> fig_, ax_ = metric.plot(metric.compute()) |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.clustering import DunnIndex |
|
>>> metric = DunnIndex(p=2) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.randn(50, 3), torch.randint(0, 2, (50,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|