# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, List, Optional, Union from torch import Tensor from torchmetrics.functional.clustering.dunn_index import dunn_index from torchmetrics.metric import Metric from torchmetrics.utilities.data import dim_zero_cat from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["DunnIndex.plot"] class DunnIndex(Metric): r"""Compute `Dunn Index`_. .. math:: DI_m = \frac{\min_{1\leq i>> import torch >>> from torchmetrics.clustering import DunnIndex >>> data = torch.tensor([[0, 0], [0.5, 0], [1, 0], [0.5, 1]]) >>> labels = torch.tensor([0, 0, 0, 1]) >>> dunn_index = DunnIndex(p=2) >>> dunn_index(data, labels) tensor(2.) """ is_differentiable: bool = True higher_is_better: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 data: List[Tensor] labels: List[Tensor] def __init__(self, p: float = 2, **kwargs: Any) -> None: super().__init__(**kwargs) self.p = p self.add_state("data", default=[], dist_reduce_fx="cat") self.add_state("labels", default=[], dist_reduce_fx="cat") def update(self, data: Tensor, labels: Tensor) -> None: """Update state with predictions and targets.""" self.data.append(data) self.labels.append(labels) def compute(self) -> Tensor: """Compute mutual information over state.""" return dunn_index(dim_zero_cat(self.data), dim_zero_cat(self.labels), self.p) def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.clustering import DunnIndex >>> data = torch.tensor([[0, 0], [0.5, 0], [1, 0], [0.5, 1]]) >>> labels = torch.tensor([0, 0, 0, 1]) >>> metric = DunnIndex(p=2) >>> metric.update(data, labels) >>> fig_, ax_ = metric.plot(metric.compute()) .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.clustering import DunnIndex >>> metric = DunnIndex(p=2) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randn(50, 3), torch.randint(0, 2, (50,)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)