|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.classification.base import _ClassificationTaskWrapper |
|
from torchmetrics.classification.confusion_matrix import ( |
|
BinaryConfusionMatrix, |
|
MulticlassConfusionMatrix, |
|
MultilabelConfusionMatrix, |
|
) |
|
from torchmetrics.functional.classification.jaccard import ( |
|
_jaccard_index_reduce, |
|
_multiclass_jaccard_index_arg_validation, |
|
_multilabel_jaccard_index_arg_validation, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.enums import ClassificationTask |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["BinaryJaccardIndex.plot", "MulticlassJaccardIndex.plot", "MultilabelJaccardIndex.plot"] |
|
|
|
|
|
class BinaryJaccardIndex(BinaryConfusionMatrix): |
|
r"""Calculate the Jaccard index for binary tasks. |
|
|
|
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic |
|
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the |
|
intersection divided by the union of the sample sets: |
|
|
|
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): A int or float tensor of shape ``(N, ...)``. If preds is a floating point |
|
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. |
|
Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
.. tip:: |
|
Additional dimension ``...`` will be flattened into the batch dimension. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``bji`` (:class:`~torch.Tensor`): A tensor containing the Binary Jaccard Index. |
|
|
|
Args: |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: |
|
Value to replace when there is a division by zero. Should be `0` or `1`. |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import BinaryJaccardIndex |
|
>>> target = tensor([1, 1, 0, 0]) |
|
>>> preds = tensor([0, 1, 0, 0]) |
|
>>> metric = BinaryJaccardIndex() |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import BinaryJaccardIndex |
|
>>> target = tensor([1, 1, 0, 0]) |
|
>>> preds = tensor([0.35, 0.85, 0.48, 0.01]) |
|
>>> metric = BinaryJaccardIndex() |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def __init__( |
|
self, |
|
threshold: float = 0.5, |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
threshold=threshold, ignore_index=ignore_index, normalize=None, validate_args=validate_args, **kwargs |
|
) |
|
self.zero_division = zero_division |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
return _jaccard_index_reduce(self.confmat, average="binary", zero_division=self.zero_division) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import BinaryJaccardIndex |
|
>>> metric = BinaryJaccardIndex() |
|
>>> metric.update(rand(10), randint(2,(10,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import BinaryJaccardIndex |
|
>>> metric = BinaryJaccardIndex() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(rand(10), randint(2,(10,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MulticlassJaccardIndex(MulticlassConfusionMatrix): |
|
r"""Calculate the Jaccard index for multiclass tasks. |
|
|
|
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic |
|
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the |
|
intersection divided by the union of the sample sets: |
|
|
|
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): A int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``. |
|
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert |
|
probabilities/logits into an int tensor. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
.. tip:: |
|
Additional dimension ``...`` will be flattened into the batch dimension. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mcji`` (:class:`~torch.Tensor`): A tensor containing the Multi-class Jaccard Index. |
|
|
|
Args: |
|
num_classes: Integer specifying the number of classes |
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
|
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: |
|
Value to replace when there is a division by zero. Should be `0` or `1`. |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example (pred is integer tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MulticlassJaccardIndex |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([2, 1, 0, 1]) |
|
>>> metric = MulticlassJaccardIndex(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (pred is float tensor): |
|
>>> from torchmetrics.classification import MulticlassJaccardIndex |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([[0.16, 0.26, 0.58], |
|
... [0.22, 0.61, 0.17], |
|
... [0.71, 0.09, 0.20], |
|
... [0.05, 0.82, 0.13]]) |
|
>>> metric = MulticlassJaccardIndex(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Class" |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
num_classes=num_classes, ignore_index=ignore_index, normalize=None, validate_args=False, **kwargs |
|
) |
|
if validate_args: |
|
_multiclass_jaccard_index_arg_validation(num_classes, ignore_index, average) |
|
self.validate_args = validate_args |
|
self.average = average |
|
self.zero_division = zero_division |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
return _jaccard_index_reduce( |
|
self.confmat, average=self.average, ignore_index=self.ignore_index, zero_division=self.zero_division |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value per class |
|
>>> from torch import randint |
|
>>> from torchmetrics.classification import MulticlassJaccardIndex |
|
>>> metric = MulticlassJaccardIndex(num_classes=3, average=None) |
|
>>> metric.update(randint(3, (20,)), randint(3, (20,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a multiple values per class |
|
>>> from torch import randint |
|
>>> from torchmetrics.classification import MulticlassJaccardIndex |
|
>>> metric = MulticlassJaccardIndex(num_classes=3, average=None) |
|
>>> values = [] |
|
>>> for _ in range(20): |
|
... values.append(metric(randint(3, (20,)), randint(3, (20,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MultilabelJaccardIndex(MultilabelConfusionMatrix): |
|
r"""Calculate the Jaccard index for multilabel tasks. |
|
|
|
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic |
|
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the |
|
intersection divided by the union of the sample sets: |
|
|
|
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): A int tensor or float tensor of shape ``(N, C, ...)``. If preds is a |
|
floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply |
|
sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)`` |
|
|
|
.. tip:: |
|
Additional dimension ``...`` will be flattened into the batch dimension. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mlji`` (:class:`~torch.Tensor`): A tensor containing the Multi-label Jaccard Index loss. |
|
|
|
Args: |
|
num_classes: Integer specifying the number of labels |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
|
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: |
|
Value to replace when there is a division by zero. Should be `0` or `1`. |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MultilabelJaccardIndex |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0, 0, 1], [1, 0, 1]]) |
|
>>> metric = MultilabelJaccardIndex(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MultilabelJaccardIndex |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) |
|
>>> metric = MultilabelJaccardIndex(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Label" |
|
|
|
def __init__( |
|
self, |
|
num_labels: int, |
|
threshold: float = 0.5, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
num_labels=num_labels, |
|
threshold=threshold, |
|
ignore_index=ignore_index, |
|
normalize=None, |
|
validate_args=False, |
|
**kwargs, |
|
) |
|
if validate_args: |
|
_multilabel_jaccard_index_arg_validation(num_labels, threshold, ignore_index, average) |
|
self.validate_args = validate_args |
|
self.average = average |
|
self.zero_division = zero_division |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
return _jaccard_index_reduce(self.confmat, average=self.average, zero_division=self.zero_division) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import MultilabelJaccardIndex |
|
>>> metric = MultilabelJaccardIndex(num_labels=3) |
|
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import MultilabelJaccardIndex |
|
>>> metric = MultilabelJaccardIndex(num_labels=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class JaccardIndex(_ClassificationTaskWrapper): |
|
r"""Calculate the Jaccard index for multilabel tasks. |
|
|
|
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic |
|
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the |
|
intersection divided by the union of the sample sets: |
|
|
|
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} |
|
|
|
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the |
|
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of |
|
:class:`~torchmetrics.classification.BinaryJaccardIndex`, |
|
:class:`~torchmetrics.classification.MulticlassJaccardIndex` and |
|
:class:`~torchmetrics.classification.MultilabelJaccardIndex` for the specific details of each argument influence |
|
and examples. |
|
|
|
Legacy Example: |
|
>>> from torch import randint, tensor |
|
>>> target = randint(0, 2, (10, 25, 25)) |
|
>>> pred = tensor(target) |
|
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15] |
|
>>> jaccard = JaccardIndex(task="multiclass", num_classes=2) |
|
>>> jaccard(pred, target) |
|
tensor(0.9660) |
|
|
|
""" |
|
|
|
def __new__( |
|
cls: type["JaccardIndex"], |
|
task: Literal["binary", "multiclass", "multilabel"], |
|
threshold: float = 0.5, |
|
num_classes: Optional[int] = None, |
|
num_labels: Optional[int] = None, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
**kwargs: Any, |
|
) -> Metric: |
|
"""Initialize task metric.""" |
|
task = ClassificationTask.from_str(task) |
|
kwargs.update({"ignore_index": ignore_index, "validate_args": validate_args}) |
|
if task == ClassificationTask.BINARY: |
|
return BinaryJaccardIndex(threshold, **kwargs) |
|
if task == ClassificationTask.MULTICLASS: |
|
if not isinstance(num_classes, int): |
|
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") |
|
return MulticlassJaccardIndex(num_classes, average, **kwargs) |
|
if task == ClassificationTask.MULTILABEL: |
|
if not isinstance(num_labels, int): |
|
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") |
|
return MultilabelJaccardIndex(num_labels, threshold, average, **kwargs) |
|
raise ValueError(f"Task {task} not supported!") |
|
|