jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.classification.base import _ClassificationTaskWrapper
from torchmetrics.classification.confusion_matrix import (
BinaryConfusionMatrix,
MulticlassConfusionMatrix,
MultilabelConfusionMatrix,
)
from torchmetrics.functional.classification.jaccard import (
_jaccard_index_reduce,
_multiclass_jaccard_index_arg_validation,
_multilabel_jaccard_index_arg_validation,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import ClassificationTask
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["BinaryJaccardIndex.plot", "MulticlassJaccardIndex.plot", "MultilabelJaccardIndex.plot"]
class BinaryJaccardIndex(BinaryConfusionMatrix):
r"""Calculate the Jaccard index for binary tasks.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): A int or float tensor of shape ``(N, ...)``. If preds is a floating point
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.
Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``.
.. tip::
Additional dimension ``...`` will be flattened into the batch dimension.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``bji`` (:class:`~torch.Tensor`): A tensor containing the Binary Jaccard Index.
Args:
threshold: Threshold for transforming probability to binary (0,1) predictions
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division:
Value to replace when there is a division by zero. Should be `0` or `1`.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import BinaryJaccardIndex
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0, 1, 0, 0])
>>> metric = BinaryJaccardIndex()
>>> metric(preds, target)
tensor(0.5000)
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryJaccardIndex
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0.35, 0.85, 0.48, 0.01])
>>> metric = BinaryJaccardIndex()
>>> metric(preds, target)
tensor(0.5000)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
threshold: float = 0.5,
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
threshold=threshold, ignore_index=ignore_index, normalize=None, validate_args=validate_args, **kwargs
)
self.zero_division = zero_division
def compute(self) -> Tensor:
"""Compute metric."""
return _jaccard_index_reduce(self.confmat, average="binary", zero_division=self.zero_division)
def plot( # type: ignore[override]
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torch import rand, randint
>>> from torchmetrics.classification import BinaryJaccardIndex
>>> metric = BinaryJaccardIndex()
>>> metric.update(rand(10), randint(2,(10,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torch import rand, randint
>>> from torchmetrics.classification import BinaryJaccardIndex
>>> metric = BinaryJaccardIndex()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(rand(10), randint(2,(10,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MulticlassJaccardIndex(MulticlassConfusionMatrix):
r"""Calculate the Jaccard index for multiclass tasks.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): A int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``.
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert
probabilities/logits into an int tensor.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``.
.. tip::
Additional dimension ``...`` will be flattened into the batch dimension.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mcji`` (:class:`~torch.Tensor`): A tensor containing the Multi-class Jaccard Index.
Args:
num_classes: Integer specifying the number of classes
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division:
Value to replace when there is a division by zero. Should be `0` or `1`.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example (pred is integer tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MulticlassJaccardIndex
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> metric = MulticlassJaccardIndex(num_classes=3)
>>> metric(preds, target)
tensor(0.6667)
Example (pred is float tensor):
>>> from torchmetrics.classification import MulticlassJaccardIndex
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
... [0.22, 0.61, 0.17],
... [0.71, 0.09, 0.20],
... [0.05, 0.82, 0.13]])
>>> metric = MulticlassJaccardIndex(num_classes=3)
>>> metric(preds, target)
tensor(0.6667)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Class"
def __init__(
self,
num_classes: int,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
num_classes=num_classes, ignore_index=ignore_index, normalize=None, validate_args=False, **kwargs
)
if validate_args:
_multiclass_jaccard_index_arg_validation(num_classes, ignore_index, average)
self.validate_args = validate_args
self.average = average
self.zero_division = zero_division
def compute(self) -> Tensor:
"""Compute metric."""
return _jaccard_index_reduce(
self.confmat, average=self.average, ignore_index=self.ignore_index, zero_division=self.zero_division
)
def plot( # type: ignore[override]
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value per class
>>> from torch import randint
>>> from torchmetrics.classification import MulticlassJaccardIndex
>>> metric = MulticlassJaccardIndex(num_classes=3, average=None)
>>> metric.update(randint(3, (20,)), randint(3, (20,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting a multiple values per class
>>> from torch import randint
>>> from torchmetrics.classification import MulticlassJaccardIndex
>>> metric = MulticlassJaccardIndex(num_classes=3, average=None)
>>> values = []
>>> for _ in range(20):
... values.append(metric(randint(3, (20,)), randint(3, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MultilabelJaccardIndex(MultilabelConfusionMatrix):
r"""Calculate the Jaccard index for multilabel tasks.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): A int tensor or float tensor of shape ``(N, C, ...)``. If preds is a
floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply
sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``
.. tip::
Additional dimension ``...`` will be flattened into the batch dimension.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mlji`` (:class:`~torch.Tensor`): A tensor containing the Multi-label Jaccard Index loss.
Args:
num_classes: Integer specifying the number of labels
threshold: Threshold for transforming probability to binary (0,1) predictions
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division:
Value to replace when there is a division by zero. Should be `0` or `1`.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MultilabelJaccardIndex
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> metric = MultilabelJaccardIndex(num_labels=3)
>>> metric(preds, target)
tensor(0.5000)
Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelJaccardIndex
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> metric = MultilabelJaccardIndex(num_labels=3)
>>> metric(preds, target)
tensor(0.5000)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Label"
def __init__(
self,
num_labels: int,
threshold: float = 0.5,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
num_labels=num_labels,
threshold=threshold,
ignore_index=ignore_index,
normalize=None,
validate_args=False,
**kwargs,
)
if validate_args:
_multilabel_jaccard_index_arg_validation(num_labels, threshold, ignore_index, average)
self.validate_args = validate_args
self.average = average
self.zero_division = zero_division
def compute(self) -> Tensor:
"""Compute metric."""
return _jaccard_index_reduce(self.confmat, average=self.average, zero_division=self.zero_division)
def plot( # type: ignore[override]
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torch import rand, randint
>>> from torchmetrics.classification import MultilabelJaccardIndex
>>> metric = MultilabelJaccardIndex(num_labels=3)
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torch import rand, randint
>>> from torchmetrics.classification import MultilabelJaccardIndex
>>> metric = MultilabelJaccardIndex(num_labels=3)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class JaccardIndex(_ClassificationTaskWrapper):
r"""Calculate the Jaccard index for multilabel tasks.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
:class:`~torchmetrics.classification.BinaryJaccardIndex`,
:class:`~torchmetrics.classification.MulticlassJaccardIndex` and
:class:`~torchmetrics.classification.MultilabelJaccardIndex` for the specific details of each argument influence
and examples.
Legacy Example:
>>> from torch import randint, tensor
>>> target = randint(0, 2, (10, 25, 25))
>>> pred = tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> jaccard = JaccardIndex(task="multiclass", num_classes=2)
>>> jaccard(pred, target)
tensor(0.9660)
"""
def __new__( # type: ignore[misc]
cls: type["JaccardIndex"],
task: Literal["binary", "multiclass", "multilabel"],
threshold: float = 0.5,
num_classes: Optional[int] = None,
num_labels: Optional[int] = None,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> Metric:
"""Initialize task metric."""
task = ClassificationTask.from_str(task)
kwargs.update({"ignore_index": ignore_index, "validate_args": validate_args})
if task == ClassificationTask.BINARY:
return BinaryJaccardIndex(threshold, **kwargs)
if task == ClassificationTask.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
return MulticlassJaccardIndex(num_classes, average, **kwargs)
if task == ClassificationTask.MULTILABEL:
if not isinstance(num_labels, int):
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`")
return MultilabelJaccardIndex(num_labels, threshold, average, **kwargs)
raise ValueError(f"Task {task} not supported!")