# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union from torch import Tensor from typing_extensions import Literal from torchmetrics.classification.base import _ClassificationTaskWrapper from torchmetrics.classification.confusion_matrix import ( BinaryConfusionMatrix, MulticlassConfusionMatrix, MultilabelConfusionMatrix, ) from torchmetrics.functional.classification.jaccard import ( _jaccard_index_reduce, _multiclass_jaccard_index_arg_validation, _multilabel_jaccard_index_arg_validation, ) from torchmetrics.metric import Metric from torchmetrics.utilities.enums import ClassificationTask from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["BinaryJaccardIndex.plot", "MulticlassJaccardIndex.plot", "MultilabelJaccardIndex.plot"] class BinaryJaccardIndex(BinaryConfusionMatrix): r"""Calculate the Jaccard index for binary tasks. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): A int or float tensor of shape ``(N, ...)``. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. - ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. .. tip:: Additional dimension ``...`` will be flattened into the batch dimension. As output to ``forward`` and ``compute`` the metric returns the following output: - ``bji`` (:class:`~torch.Tensor`): A tensor containing the Binary Jaccard Index. Args: threshold: Threshold for transforming probability to binary (0,1) predictions ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. zero_division: Value to replace when there is a division by zero. Should be `0` or `1`. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example (preds is int tensor): >>> from torch import tensor >>> from torchmetrics.classification import BinaryJaccardIndex >>> target = tensor([1, 1, 0, 0]) >>> preds = tensor([0, 1, 0, 0]) >>> metric = BinaryJaccardIndex() >>> metric(preds, target) tensor(0.5000) Example (preds is float tensor): >>> from torchmetrics.classification import BinaryJaccardIndex >>> target = tensor([1, 1, 0, 0]) >>> preds = tensor([0.35, 0.85, 0.48, 0.01]) >>> metric = BinaryJaccardIndex() >>> metric(preds, target) tensor(0.5000) """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 def __init__( self, threshold: float = 0.5, ignore_index: Optional[int] = None, validate_args: bool = True, zero_division: float = 0, **kwargs: Any, ) -> None: super().__init__( threshold=threshold, ignore_index=ignore_index, normalize=None, validate_args=validate_args, **kwargs ) self.zero_division = zero_division def compute(self) -> Tensor: """Compute metric.""" return _jaccard_index_reduce(self.confmat, average="binary", zero_division=self.zero_division) def plot( # type: ignore[override] self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure object and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> from torch import rand, randint >>> from torchmetrics.classification import BinaryJaccardIndex >>> metric = BinaryJaccardIndex() >>> metric.update(rand(10), randint(2,(10,))) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> from torch import rand, randint >>> from torchmetrics.classification import BinaryJaccardIndex >>> metric = BinaryJaccardIndex() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(rand(10), randint(2,(10,)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax) class MulticlassJaccardIndex(MulticlassConfusionMatrix): r"""Calculate the Jaccard index for multiclass tasks. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): A int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``. If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert probabilities/logits into an int tensor. - ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. .. tip:: Additional dimension ``...`` will be flattened into the batch dimension. As output to ``forward`` and ``compute`` the metric returns the following output: - ``mcji`` (:class:`~torch.Tensor`): A tensor containing the Multi-class Jaccard Index. Args: num_classes: Integer specifying the number of classes ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation average: Defines the reduction that is applied over labels. Should be one of the following: - ``micro``: Sum statistics over all labels - ``macro``: Calculate statistics for each label and average them - ``weighted``: calculates statistics for each label and computes weighted average using their support - ``"none"`` or ``None``: calculates statistic for each label and applies no reduction validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. zero_division: Value to replace when there is a division by zero. Should be `0` or `1`. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example (pred is integer tensor): >>> from torch import tensor >>> from torchmetrics.classification import MulticlassJaccardIndex >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([2, 1, 0, 1]) >>> metric = MulticlassJaccardIndex(num_classes=3) >>> metric(preds, target) tensor(0.6667) Example (pred is float tensor): >>> from torchmetrics.classification import MulticlassJaccardIndex >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([[0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13]]) >>> metric = MulticlassJaccardIndex(num_classes=3) >>> metric(preds, target) tensor(0.6667) """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 plot_legend_name: str = "Class" def __init__( self, num_classes: int, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", ignore_index: Optional[int] = None, validate_args: bool = True, zero_division: float = 0, **kwargs: Any, ) -> None: super().__init__( num_classes=num_classes, ignore_index=ignore_index, normalize=None, validate_args=False, **kwargs ) if validate_args: _multiclass_jaccard_index_arg_validation(num_classes, ignore_index, average) self.validate_args = validate_args self.average = average self.zero_division = zero_division def compute(self) -> Tensor: """Compute metric.""" return _jaccard_index_reduce( self.confmat, average=self.average, ignore_index=self.ignore_index, zero_division=self.zero_division ) def plot( # type: ignore[override] self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure object and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value per class >>> from torch import randint >>> from torchmetrics.classification import MulticlassJaccardIndex >>> metric = MulticlassJaccardIndex(num_classes=3, average=None) >>> metric.update(randint(3, (20,)), randint(3, (20,))) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting a multiple values per class >>> from torch import randint >>> from torchmetrics.classification import MulticlassJaccardIndex >>> metric = MulticlassJaccardIndex(num_classes=3, average=None) >>> values = [] >>> for _ in range(20): ... values.append(metric(randint(3, (20,)), randint(3, (20,)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax) class MultilabelJaccardIndex(MultilabelConfusionMatrix): r"""Calculate the Jaccard index for multilabel tasks. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): A int tensor or float tensor of shape ``(N, C, ...)``. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. - ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)`` .. tip:: Additional dimension ``...`` will be flattened into the batch dimension. As output to ``forward`` and ``compute`` the metric returns the following output: - ``mlji`` (:class:`~torch.Tensor`): A tensor containing the Multi-label Jaccard Index loss. Args: num_classes: Integer specifying the number of labels threshold: Threshold for transforming probability to binary (0,1) predictions ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation average: Defines the reduction that is applied over labels. Should be one of the following: - ``micro``: Sum statistics over all labels - ``macro``: Calculate statistics for each label and average them - ``weighted``: calculates statistics for each label and computes weighted average using their support - ``"none"`` or ``None``: calculates statistic for each label and applies no reduction validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. zero_division: Value to replace when there is a division by zero. Should be `0` or `1`. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example (preds is int tensor): >>> from torch import tensor >>> from torchmetrics.classification import MultilabelJaccardIndex >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> metric = MultilabelJaccardIndex(num_labels=3) >>> metric(preds, target) tensor(0.5000) Example (preds is float tensor): >>> from torchmetrics.classification import MultilabelJaccardIndex >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> metric = MultilabelJaccardIndex(num_labels=3) >>> metric(preds, target) tensor(0.5000) """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 plot_legend_name: str = "Label" def __init__( self, num_labels: int, threshold: float = 0.5, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", ignore_index: Optional[int] = None, validate_args: bool = True, zero_division: float = 0, **kwargs: Any, ) -> None: super().__init__( num_labels=num_labels, threshold=threshold, ignore_index=ignore_index, normalize=None, validate_args=False, **kwargs, ) if validate_args: _multilabel_jaccard_index_arg_validation(num_labels, threshold, ignore_index, average) self.validate_args = validate_args self.average = average self.zero_division = zero_division def compute(self) -> Tensor: """Compute metric.""" return _jaccard_index_reduce(self.confmat, average=self.average, zero_division=self.zero_division) def plot( # type: ignore[override] self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> from torch import rand, randint >>> from torchmetrics.classification import MultilabelJaccardIndex >>> metric = MultilabelJaccardIndex(num_labels=3) >>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> from torch import rand, randint >>> from torchmetrics.classification import MultilabelJaccardIndex >>> metric = MultilabelJaccardIndex(num_labels=3) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax) class JaccardIndex(_ClassificationTaskWrapper): r"""Calculate the Jaccard index for multilabel tasks. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the ``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of :class:`~torchmetrics.classification.BinaryJaccardIndex`, :class:`~torchmetrics.classification.MulticlassJaccardIndex` and :class:`~torchmetrics.classification.MultilabelJaccardIndex` for the specific details of each argument influence and examples. Legacy Example: >>> from torch import randint, tensor >>> target = randint(0, 2, (10, 25, 25)) >>> pred = tensor(target) >>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15] >>> jaccard = JaccardIndex(task="multiclass", num_classes=2) >>> jaccard(pred, target) tensor(0.9660) """ def __new__( # type: ignore[misc] cls: type["JaccardIndex"], task: Literal["binary", "multiclass", "multilabel"], threshold: float = 0.5, num_classes: Optional[int] = None, num_labels: Optional[int] = None, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", ignore_index: Optional[int] = None, validate_args: bool = True, **kwargs: Any, ) -> Metric: """Initialize task metric.""" task = ClassificationTask.from_str(task) kwargs.update({"ignore_index": ignore_index, "validate_args": validate_args}) if task == ClassificationTask.BINARY: return BinaryJaccardIndex(threshold, **kwargs) if task == ClassificationTask.MULTICLASS: if not isinstance(num_classes, int): raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") return MulticlassJaccardIndex(num_classes, average, **kwargs) if task == ClassificationTask.MULTILABEL: if not isinstance(num_labels, int): raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") return MultilabelJaccardIndex(num_labels, threshold, average, **kwargs) raise ValueError(f"Task {task} not supported!")