|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.audio.srmr import ( |
|
_srmr_arg_validate, |
|
speech_reverberation_modulation_energy_ratio, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import ( |
|
_GAMMATONE_AVAILABLE, |
|
_MATPLOTLIB_AVAILABLE, |
|
_TORCHAUDIO_AVAILABLE, |
|
) |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not all([_GAMMATONE_AVAILABLE, _TORCHAUDIO_AVAILABLE]): |
|
__doctest_skip__ = ["SpeechReverberationModulationEnergyRatio", "SpeechReverberationModulationEnergyRatio.plot"] |
|
elif not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["SpeechReverberationModulationEnergyRatio.plot"] |
|
|
|
|
|
class SpeechReverberationModulationEnergyRatio(Metric): |
|
"""Calculate `Speech-to-Reverberation Modulation Energy Ratio`_ (SRMR). |
|
|
|
SRMR is a non-intrusive metric for speech quality and intelligibility based on |
|
a modulation spectral representation of the speech signal. |
|
This code is translated from `SRMRToolbox`_ and `SRMRpy`_. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): float tensor with shape ``(...,time)`` |
|
|
|
As output of `forward` and `compute` the metric returns the following output |
|
|
|
- ``srmr`` (:class:`~torch.Tensor`): float scaler tensor |
|
|
|
.. hint:: |
|
Using this metrics requires you to have ``gammatone`` and ``torchaudio`` installed. |
|
Either install as ``pip install torchmetrics[audio]`` or ``pip install torchaudio`` |
|
and ``pip install git+https://github.com/detly/gammatone``. |
|
|
|
.. attention:: |
|
This implementation is experimental, and might not be consistent with the matlab |
|
implementation `SRMRToolbox`_, especially the fast implementation. |
|
The slow versions, a) fast=False, norm=False, max_cf=128, b) fast=False, norm=True, max_cf=30, have |
|
a relatively small inconsistency. |
|
|
|
Args: |
|
fs: the sampling rate |
|
n_cochlear_filters: Number of filters in the acoustic filterbank |
|
low_freq: determines the frequency cutoff for the corresponding gammatone filterbank. |
|
min_cf: Center frequency in Hz of the first modulation filter. |
|
max_cf: Center frequency in Hz of the last modulation filter. If None is given, |
|
then 30 Hz will be used for `norm==False`, otherwise 128 Hz will be used. |
|
norm: Use modulation spectrum energy normalization |
|
fast: Use the faster version based on the gammatonegram. |
|
Note: this argument is inherited from `SRMRpy`_. As the translated code is based to pytorch, |
|
setting `fast=True` may slow down the speed for calculating this metric on GPU. |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If ``gammatone`` or ``torchaudio`` package is not installed |
|
|
|
Example: |
|
>>> from torch import randn |
|
>>> from torchmetrics.audio import SpeechReverberationModulationEnergyRatio |
|
>>> preds = randn(8000) |
|
>>> srmr = SpeechReverberationModulationEnergyRatio(8000) |
|
>>> srmr(preds) |
|
tensor(0.3191) |
|
|
|
""" |
|
|
|
msum: Tensor |
|
total: Tensor |
|
full_state_update: bool = False |
|
is_differentiable: bool = True |
|
higher_is_better: bool = True |
|
plot_lower_bound: Optional[float] = None |
|
plot_upper_bound: Optional[float] = None |
|
|
|
def __init__( |
|
self, |
|
fs: int, |
|
n_cochlear_filters: int = 23, |
|
low_freq: float = 125, |
|
min_cf: float = 4, |
|
max_cf: Optional[float] = None, |
|
norm: bool = False, |
|
fast: bool = False, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if not _TORCHAUDIO_AVAILABLE or not _GAMMATONE_AVAILABLE: |
|
raise ModuleNotFoundError( |
|
"speech_reverberation_modulation_energy_ratio requires you to have `gammatone` and" |
|
" `torchaudio>=0.10` installed. Either install as ``pip install torchmetrics[audio]`` or " |
|
"``pip install torchaudio>=0.10`` and ``pip install git+https://github.com/detly/gammatone``" |
|
) |
|
_srmr_arg_validate( |
|
fs=fs, |
|
n_cochlear_filters=n_cochlear_filters, |
|
low_freq=low_freq, |
|
min_cf=min_cf, |
|
max_cf=max_cf, |
|
norm=norm, |
|
fast=fast, |
|
) |
|
|
|
self.fs = fs |
|
self.n_cochlear_filters = n_cochlear_filters |
|
self.low_freq = low_freq |
|
self.min_cf = min_cf |
|
self.max_cf = max_cf |
|
self.norm = norm |
|
self.fast = fast |
|
|
|
self.add_state("msum", default=tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("total", default=tensor(0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor) -> None: |
|
"""Update state with predictions.""" |
|
metric_val_batch = speech_reverberation_modulation_energy_ratio( |
|
preds, self.fs, self.n_cochlear_filters, self.low_freq, self.min_cf, self.max_cf, self.norm, self.fast |
|
).to(self.msum.device) |
|
|
|
self.msum += metric_val_batch.sum() |
|
self.total += metric_val_batch.numel() |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
return self.msum / self.total |
|
|
|
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.audio import SpeechReverberationModulationEnergyRatio |
|
>>> metric = SpeechReverberationModulationEnergyRatio(8000) |
|
>>> metric.update(torch.rand(8000)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.audio import SpeechReverberationModulationEnergyRatio |
|
>>> metric = SpeechReverberationModulationEnergyRatio(8000) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.rand(8000))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|