File size: 7,376 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union

from torch import Tensor, tensor

from torchmetrics.functional.audio.srmr import (
    _srmr_arg_validate,
    speech_reverberation_modulation_energy_ratio,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import (
    _GAMMATONE_AVAILABLE,
    _MATPLOTLIB_AVAILABLE,
    _TORCHAUDIO_AVAILABLE,
)
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not all([_GAMMATONE_AVAILABLE, _TORCHAUDIO_AVAILABLE]):
    __doctest_skip__ = ["SpeechReverberationModulationEnergyRatio", "SpeechReverberationModulationEnergyRatio.plot"]
elif not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["SpeechReverberationModulationEnergyRatio.plot"]


class SpeechReverberationModulationEnergyRatio(Metric):
    """Calculate `Speech-to-Reverberation Modulation Energy Ratio`_ (SRMR).

    SRMR is a non-intrusive metric for speech quality and intelligibility based on
    a modulation spectral representation of the speech signal.
    This code is translated from `SRMRToolbox`_ and `SRMRpy`_.

    As input to ``forward`` and ``update`` the metric accepts the following input

    - ``preds`` (:class:`~torch.Tensor`): float tensor with shape ``(...,time)``

    As output of `forward` and `compute` the metric returns the following output

    - ``srmr`` (:class:`~torch.Tensor`): float scaler tensor

    .. hint::
        Using this metrics requires you to have ``gammatone`` and ``torchaudio`` installed.
        Either install as ``pip install torchmetrics[audio]`` or ``pip install torchaudio``
        and ``pip install git+https://github.com/detly/gammatone``.

    .. attention::
        This implementation is experimental, and might not be consistent with the matlab
        implementation `SRMRToolbox`_, especially the fast implementation.
        The slow versions, a) fast=False, norm=False, max_cf=128, b) fast=False, norm=True, max_cf=30, have
        a relatively small inconsistency.

    Args:
        fs: the sampling rate
        n_cochlear_filters: Number of filters in the acoustic filterbank
        low_freq: determines the frequency cutoff for the corresponding gammatone filterbank.
        min_cf: Center frequency in Hz of the first modulation filter.
        max_cf: Center frequency in Hz of the last modulation filter. If None is given,
            then 30 Hz will be used for `norm==False`, otherwise 128 Hz will be used.
        norm: Use modulation spectrum energy normalization
        fast: Use the faster version based on the gammatonegram.
            Note: this argument is inherited from `SRMRpy`_. As the translated code is based to pytorch,
            setting `fast=True` may slow down the speed for calculating this metric on GPU.

    Raises:
        ModuleNotFoundError:
            If ``gammatone`` or ``torchaudio`` package is not installed

    Example:
        >>> from torch import randn
        >>> from torchmetrics.audio import SpeechReverberationModulationEnergyRatio
        >>> preds = randn(8000)
        >>> srmr = SpeechReverberationModulationEnergyRatio(8000)
        >>> srmr(preds)
        tensor(0.3191)

    """

    msum: Tensor
    total: Tensor
    full_state_update: bool = False
    is_differentiable: bool = True
    higher_is_better: bool = True
    plot_lower_bound: Optional[float] = None
    plot_upper_bound: Optional[float] = None

    def __init__(
        self,
        fs: int,
        n_cochlear_filters: int = 23,
        low_freq: float = 125,
        min_cf: float = 4,
        max_cf: Optional[float] = None,
        norm: bool = False,
        fast: bool = False,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        if not _TORCHAUDIO_AVAILABLE or not _GAMMATONE_AVAILABLE:
            raise ModuleNotFoundError(
                "speech_reverberation_modulation_energy_ratio requires you to have `gammatone` and"
                " `torchaudio>=0.10` installed. Either install as ``pip install torchmetrics[audio]`` or "
                "``pip install torchaudio>=0.10`` and ``pip install git+https://github.com/detly/gammatone``"
            )
        _srmr_arg_validate(
            fs=fs,
            n_cochlear_filters=n_cochlear_filters,
            low_freq=low_freq,
            min_cf=min_cf,
            max_cf=max_cf,
            norm=norm,
            fast=fast,
        )

        self.fs = fs
        self.n_cochlear_filters = n_cochlear_filters
        self.low_freq = low_freq
        self.min_cf = min_cf
        self.max_cf = max_cf
        self.norm = norm
        self.fast = fast

        self.add_state("msum", default=tensor(0.0), dist_reduce_fx="sum")
        self.add_state("total", default=tensor(0), dist_reduce_fx="sum")

    def update(self, preds: Tensor) -> None:
        """Update state with predictions."""
        metric_val_batch = speech_reverberation_modulation_energy_ratio(
            preds, self.fs, self.n_cochlear_filters, self.low_freq, self.min_cf, self.max_cf, self.norm, self.fast
        ).to(self.msum.device)

        self.msum += metric_val_batch.sum()
        self.total += metric_val_batch.numel()

    def compute(self) -> Tensor:
        """Compute metric."""
        return self.msum / self.total

    def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.audio import SpeechReverberationModulationEnergyRatio
            >>> metric = SpeechReverberationModulationEnergyRatio(8000)
            >>> metric.update(torch.rand(8000))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.audio import SpeechReverberationModulationEnergyRatio
            >>> metric = SpeechReverberationModulationEnergyRatio(8000)
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(torch.rand(8000)))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)