|
from __future__ import annotations |
|
|
|
import argparse |
|
import os |
|
import re |
|
from collections import Counter, defaultdict, namedtuple |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING |
|
|
|
import yaml |
|
|
|
import torchgen.api.dispatcher as dispatcher |
|
import torchgen.dest as dest |
|
from torchgen.api.types import DispatcherSignature |
|
from torchgen.code_template import CodeTemplate |
|
from torchgen.context import native_function_manager |
|
from torchgen.gen import get_grouped_native_functions, parse_native_yaml |
|
from torchgen.model import ( |
|
BackendIndex, |
|
BackendMetadata, |
|
DispatchKey, |
|
NativeFunction, |
|
NativeFunctionsGroup, |
|
OperatorName, |
|
) |
|
from torchgen.selective_build.selector import SelectiveBuilder |
|
from torchgen.utils import concatMap, context, FileManager, NamespaceHelper, Target |
|
from torchgen.yaml_utils import YamlLoader |
|
|
|
|
|
if TYPE_CHECKING: |
|
from collections.abc import Sequence |
|
|
|
|
|
|
|
|
|
ParsedExternalYaml = namedtuple( |
|
"ParsedExternalYaml", |
|
["backend_key", "autograd_key", "class_name", "cpp_namespace", "backend_indices"], |
|
) |
|
|
|
|
|
def parse_backend_yaml( |
|
backend_yaml_path: str, |
|
grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], |
|
backend_indices: dict[DispatchKey, BackendIndex], |
|
) -> ParsedExternalYaml: |
|
native_functions_map: dict[OperatorName, NativeFunction] = { |
|
f.func.name: f |
|
for f in concatMap( |
|
lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), |
|
grouped_native_functions, |
|
) |
|
} |
|
|
|
with open(backend_yaml_path) as f: |
|
yaml_values = yaml.load(f, Loader=YamlLoader) |
|
assert isinstance(yaml_values, dict) |
|
|
|
valid_keys = [ |
|
"backend", |
|
"class_name", |
|
"cpp_namespace", |
|
"extra_headers", |
|
"supported", |
|
"autograd", |
|
"full_codegen", |
|
"non_native", |
|
"ir_gen", |
|
"symint", |
|
] |
|
|
|
backend = yaml_values.pop("backend", None) |
|
assert backend is not None, 'You must provide a value for "backend"' |
|
|
|
class_name = yaml_values.pop("class_name", None) |
|
|
|
cpp_namespace = yaml_values.pop("cpp_namespace", None) |
|
assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"' |
|
|
|
|
|
use_out_as_primary = yaml_values.pop("use_out_as_primary", False) |
|
assert isinstance(use_out_as_primary, bool), ( |
|
f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}" |
|
) |
|
|
|
use_device_guard = yaml_values.pop("device_guard", False) |
|
assert isinstance(use_device_guard, bool), ( |
|
f"You must provide either True or False for device_guard. Provided: {use_device_guard}" |
|
) |
|
|
|
supported = yaml_values.pop("supported", []) |
|
if supported is None: |
|
supported = [] |
|
assert isinstance(supported, list), ( |
|
f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})' |
|
) |
|
|
|
symint = yaml_values.pop("symint", []) |
|
if symint is None: |
|
symint = [] |
|
assert isinstance(symint, list), ( |
|
f'expected "symint" to be a list, but got: {supported} (of type {type(supported)})' |
|
) |
|
symint_set = set(symint) |
|
|
|
supported_autograd = yaml_values.pop("autograd", []) |
|
assert isinstance(supported_autograd, list), ( |
|
f'expected "autograd" to be a list, but got: {supported_autograd}' |
|
) |
|
|
|
|
|
full_codegen = yaml_values.pop("full_codegen", []) |
|
supported.extend(full_codegen) |
|
|
|
|
|
yaml_values.pop("non_native", {}) |
|
|
|
|
|
yaml_values.pop("ir_gen", {}) |
|
|
|
assert len(yaml_values.keys()) == 0, ( |
|
f"{backend_yaml_path} contains unexpected keys: {', '.join(yaml_values.keys())}. " |
|
f"Only the following keys are supported: {', '.join(valid_keys)}" |
|
) |
|
|
|
def create_backend_index( |
|
backend_ops: list[str], |
|
symint_ops: set[str], |
|
dispatch_key: DispatchKey, |
|
*, |
|
use_out_as_primary: bool, |
|
use_device_guard: bool, |
|
) -> BackendIndex: |
|
metadata: dict[OperatorName, BackendMetadata] = {} |
|
for op in backend_ops: |
|
op_name = OperatorName.parse(op) |
|
assert op_name in native_functions_map, ( |
|
f"Found an invalid operator name: {op_name}" |
|
) |
|
|
|
kernel_name = dispatcher.name(native_functions_map[op_name].func) |
|
if op in symint_ops: |
|
kernel_name += "_symint" |
|
|
|
m = BackendMetadata( |
|
kernel=kernel_name, structured=False, cpp_namespace=cpp_namespace |
|
) |
|
metadata[op_name] = m |
|
return BackendIndex( |
|
dispatch_key=dispatch_key, |
|
use_out_as_primary=use_out_as_primary, |
|
external=True, |
|
device_guard=use_device_guard, |
|
index=metadata, |
|
) |
|
|
|
backend_key: DispatchKey | None = None |
|
if len(supported) > 0: |
|
with context( |
|
lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.' |
|
): |
|
backend_key = DispatchKey.parse(backend) |
|
|
|
backend_idx = create_backend_index( |
|
supported, |
|
symint_set, |
|
backend_key, |
|
use_out_as_primary=use_out_as_primary, |
|
use_device_guard=use_device_guard, |
|
) |
|
assert backend_key not in backend_indices |
|
backend_indices[backend_key] = backend_idx |
|
|
|
autograd_key: DispatchKey | None = None |
|
if len(supported_autograd) > 0: |
|
with context( |
|
lambda: f'The "autograd" key was specified, which indicates that you would like to override \ |
|
the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.' |
|
): |
|
autograd_key = DispatchKey.parse(f"Autograd{backend}") |
|
|
|
autograd_idx = create_backend_index( |
|
supported_autograd, |
|
symint_set, |
|
autograd_key, |
|
use_out_as_primary=use_out_as_primary, |
|
use_device_guard=use_device_guard, |
|
) |
|
assert autograd_key not in backend_indices |
|
backend_indices[autograd_key] = autograd_idx |
|
|
|
for g in grouped_native_functions: |
|
if isinstance(g, NativeFunction): |
|
forward_kernels = ( |
|
[] |
|
if backend_key is None |
|
else [ |
|
m |
|
for m in [backend_indices[backend_key].get_kernel(g)] |
|
if m is not None |
|
] |
|
) |
|
backward_kernels = ( |
|
[] |
|
if autograd_key is None |
|
else [ |
|
m |
|
for m in [backend_indices[autograd_key].get_kernel(g)] |
|
if m is not None |
|
] |
|
) |
|
else: |
|
forward_kernels = ( |
|
[] |
|
if backend_key is None |
|
else [ |
|
m |
|
for m in [ |
|
backend_indices[backend_key].get_kernel(f) |
|
for f in g.functions() |
|
] |
|
if m is not None |
|
] |
|
) |
|
backward_kernels = ( |
|
[] |
|
if autograd_key is None |
|
else [ |
|
m |
|
for m in [ |
|
backend_indices[autograd_key].get_kernel(f) |
|
for f in g.functions() |
|
] |
|
if m is not None |
|
] |
|
) |
|
|
|
forward_kernels = [f for f in forward_kernels if f is not None] |
|
backward_kernels = [f for f in backward_kernels if f is not None] |
|
assert len(forward_kernels) == 0 or len(backward_kernels) == 0, ( |
|
f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \ |
|
autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \ |
|
{forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".' |
|
) |
|
|
|
return ParsedExternalYaml( |
|
backend_key, autograd_key, class_name, cpp_namespace, backend_indices |
|
) |
|
|
|
|
|
def error_on_missing_kernels( |
|
native_functions: Sequence[NativeFunction], |
|
backend_indices: dict[DispatchKey, BackendIndex], |
|
backend_key: DispatchKey, |
|
autograd_key: DispatchKey | None, |
|
class_name: str, |
|
kernel_defn_file_path: str, |
|
full_codegen: list[OperatorName] | None = None, |
|
) -> None: |
|
try: |
|
with open(kernel_defn_file_path) as f: |
|
backend_defns = f.read() |
|
except OSError as e: |
|
raise AssertionError( |
|
f"Unable to read from the specified impl_path file: {kernel_defn_file_path}" |
|
) from e |
|
|
|
if full_codegen is None: |
|
full_codegen = [] |
|
|
|
indices = [backend_indices[backend_key].index] + ( |
|
[] if autograd_key is None else [backend_indices[autograd_key].index] |
|
) |
|
|
|
|
|
expected_backend_op_names: dict[OperatorName, str] = dict( |
|
list( |
|
concatMap( |
|
lambda index: [ |
|
(op_name, metadata.kernel) for op_name, metadata in index.items() |
|
], |
|
indices, |
|
) |
|
) |
|
) |
|
expected_backend_native_funcs: list[NativeFunction] = [ |
|
f |
|
for f in native_functions |
|
if f.func.name in expected_backend_op_names.keys() |
|
and f.func.name not in full_codegen |
|
] |
|
expected_backend_kernel_name_counts: dict[str, list[NativeFunction]] = defaultdict( |
|
list |
|
) |
|
for native_f in expected_backend_native_funcs: |
|
expected_backend_kernel_name_counts[ |
|
expected_backend_op_names[native_f.func.name] |
|
].append(native_f) |
|
|
|
|
|
|
|
|
|
kernel_defn_regex = rf"(.*){class_name}::\s*([\w\d]*)\(" |
|
actual_backend_kernel_name_counts = Counter( |
|
|
|
|
|
|
|
|
|
[ |
|
y |
|
for (x, y) in re.findall(kernel_defn_regex, backend_defns) |
|
if not x.endswith(":") |
|
] |
|
) |
|
|
|
missing_kernels_err_msg = "" |
|
for expected_name, funcs in expected_backend_kernel_name_counts.items(): |
|
expected_overload_count = len(funcs) |
|
actual_overload_count = actual_backend_kernel_name_counts[expected_name] |
|
if expected_overload_count != actual_overload_count: |
|
|
|
def create_decl(f: NativeFunction) -> str: |
|
with native_function_manager(f): |
|
return DispatcherSignature.from_schema(f.func).decl() |
|
|
|
expected_schemas_str = "\n".join([create_decl(f) for f in funcs]) |
|
missing_kernels_err_msg += f""" |
|
{class_name} is missing a kernel definition for {expected_name}. We found {actual_overload_count} kernel(s) with that name, |
|
but expected {expected_overload_count} kernel(s). The expected function schemas for the missing operator are: |
|
{expected_schemas_str} |
|
|
|
""" |
|
assert missing_kernels_err_msg == "", missing_kernels_err_msg |
|
|
|
|
|
def main() -> None: |
|
parser = argparse.ArgumentParser(description="Generate backend stub files") |
|
parser.add_argument( |
|
"-s", |
|
"--source-yaml", |
|
"--source_yaml", |
|
help="path to source yaml file containing operator external definitions", |
|
) |
|
parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory") |
|
parser.add_argument( |
|
"--dry-run", "--dry_run", type=bool, default=False, help="output directory" |
|
) |
|
parser.add_argument( |
|
"--impl-path", |
|
"--impl_path", |
|
type=str, |
|
default=None, |
|
help="path to the source C++ file containing kernel definitions", |
|
) |
|
options = parser.parse_args() |
|
|
|
run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path) |
|
|
|
|
|
def gen_dispatchkey_nativefunc_headers( |
|
fm: FileManager, |
|
class_name: str, |
|
cpp_namespace: str, |
|
backend_indices: dict[DispatchKey, BackendIndex], |
|
grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], |
|
backend_dispatch_key: DispatchKey, |
|
autograd_dispatch_key: DispatchKey | None, |
|
backend_name: str = "", |
|
) -> None: |
|
assert class_name is not None |
|
generated_comment = ( |
|
"Autogenerated file by gen_backend_stubs.py. Do not edit directly!" |
|
) |
|
|
|
|
|
|
|
|
|
backend_declarations = sorted( |
|
set( |
|
concatMap( |
|
lambda f: dest.compute_native_function_declaration( |
|
f, backend_indices[backend_dispatch_key] |
|
), |
|
grouped_native_functions, |
|
) |
|
) |
|
) |
|
autograd_declarations = sorted( |
|
set( |
|
concatMap( |
|
lambda f: [] |
|
if autograd_dispatch_key is None |
|
else dest.compute_native_function_declaration( |
|
f, backend_indices[autograd_dispatch_key] |
|
), |
|
grouped_native_functions, |
|
) |
|
) |
|
) |
|
|
|
ns_helper = NamespaceHelper(cpp_namespace) |
|
fm.write_with_template( |
|
f"{backend_dispatch_key}NativeFunctions.h", |
|
"DispatchKeyNativeFunctions.h", |
|
lambda: { |
|
"generated_comment": generated_comment, |
|
"namespace_prologue": ns_helper.prologue, |
|
"class_name": class_name, |
|
"namespace_epilogue": ns_helper.epilogue, |
|
"dispatch_declarations": backend_declarations + autograd_declarations, |
|
"BackendName": backend_name, |
|
"DispatchKey": backend_dispatch_key, |
|
}, |
|
) |
|
|
|
|
|
def gen_dispatcher_registrations( |
|
fm: FileManager, |
|
output_dir: str, |
|
class_name: str, |
|
backend_indices: dict[DispatchKey, BackendIndex], |
|
grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], |
|
backend_dispatch_key: DispatchKey, |
|
dispatch_key: DispatchKey, |
|
selector: SelectiveBuilder, |
|
|
|
build_in_tree: bool = False, |
|
per_operator_headers: bool = False, |
|
backend_name: str = "", |
|
eager_registration: bool = True, |
|
) -> None: |
|
headers = [ |
|
f"{output_dir}/{backend_dispatch_key}NativeFunctions.h", |
|
] |
|
if build_in_tree: |
|
external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers) |
|
else: |
|
external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers) |
|
|
|
assert class_name is not None |
|
backend_index = backend_indices[dispatch_key] |
|
|
|
dispatch_registrations_body = list( |
|
concatMap( |
|
dest.RegisterDispatchKey( |
|
backend_index, |
|
Target.REGISTRATION, |
|
selector, |
|
rocm=False, |
|
symint=True, |
|
class_method_name=f"{class_name}", |
|
skip_dispatcher_op_registration=False, |
|
), |
|
grouped_native_functions, |
|
) |
|
) |
|
newline = "\n" |
|
ns_helper = NamespaceHelper(namespace_str="at") |
|
deferred_dispatch_registrations = "" |
|
static_init_dispatch_registrations = "" |
|
if eager_registration: |
|
static_template = CodeTemplate( |
|
"""\ |
|
TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) { |
|
$dispatch_registrations_body |
|
}""" |
|
) |
|
static_init_dispatch_registrations = static_template.substitute( |
|
dispatch_key=dispatch_key, |
|
dispatch_registrations_body=dispatch_registrations_body, |
|
) |
|
else: |
|
deferred_template = CodeTemplate( |
|
"""\ |
|
TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions(); |
|
TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() { |
|
static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key); |
|
$dispatch_registrations_body |
|
}""" |
|
) |
|
deferred_dispatch_registrations = deferred_template.substitute( |
|
backend_name=backend_name, |
|
dispatch_key=dispatch_key, |
|
dispatch_registrations_body=dispatch_registrations_body, |
|
) |
|
|
|
fm.write_with_template( |
|
f"Register{dispatch_key}.cpp", |
|
"RegisterDispatchKey.cpp", |
|
lambda: { |
|
"extra_cuda_headers": "", |
|
"external_backend_headers": external_backend_headers_str, |
|
"ops_headers": "#include <ATen/Functions.h>" |
|
if not per_operator_headers |
|
else "", |
|
"DispatchKey": dispatch_key, |
|
"dispatch_namespace": dispatch_key.lower(), |
|
"dispatch_headers": dest.gen_registration_headers( |
|
backend_index, per_operator_headers=per_operator_headers, rocm=False |
|
), |
|
"dispatch_helpers": dest.gen_registration_helpers(backend_index), |
|
"dispatch_definitions": fm.substitute_with_template( |
|
"RegisterDispatchDefinitions.ini", |
|
lambda: { |
|
"ns_prologue": ns_helper.prologue, |
|
"ns_epilogue": ns_helper.epilogue, |
|
"static_init_dispatch_registrations": static_init_dispatch_registrations, |
|
"deferred_dispatch_registrations": deferred_dispatch_registrations, |
|
"dispatch_namespace": dispatch_key.lower(), |
|
"dispatch_namespaced_definitions": "", |
|
"dispatch_anonymous_definitions": list( |
|
concatMap( |
|
dest.RegisterDispatchKey( |
|
backend_index, |
|
Target.ANONYMOUS_DEFINITION, |
|
selector, |
|
rocm=False, |
|
symint=True, |
|
class_method_name=f"{class_name}", |
|
skip_dispatcher_op_registration=False, |
|
), |
|
grouped_native_functions, |
|
) |
|
), |
|
}, |
|
).split(newline), |
|
}, |
|
) |
|
|
|
|
|
def run( |
|
source_yaml: str, output_dir: str, dry_run: bool, impl_path: str | None = None |
|
) -> None: |
|
|
|
pytorch_root = Path(__file__).absolute().parent.parent |
|
template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") |
|
|
|
def make_file_manager(install_dir: str) -> FileManager: |
|
return FileManager( |
|
install_dir=install_dir, template_dir=template_dir, dry_run=dry_run |
|
) |
|
|
|
fm = make_file_manager(output_dir) |
|
|
|
native_yaml_path = os.path.join( |
|
pytorch_root, "aten/src/ATen/native/native_functions.yaml" |
|
) |
|
tags_yaml_path = os.path.join(pytorch_root, "aten/src/ATen/native/tags.yaml") |
|
parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) |
|
native_functions, backend_indices = ( |
|
parsed_yaml.native_functions, |
|
parsed_yaml.backend_indices, |
|
) |
|
grouped_native_functions = get_grouped_native_functions(native_functions) |
|
parsed_backend_yaml = parse_backend_yaml( |
|
source_yaml, grouped_native_functions, backend_indices |
|
) |
|
backend_key = parsed_backend_yaml.backend_key |
|
autograd_key = parsed_backend_yaml.autograd_key |
|
cpp_namespace = parsed_backend_yaml.cpp_namespace |
|
class_name = parsed_backend_yaml.class_name |
|
backend_indices = parsed_backend_yaml.backend_indices |
|
|
|
selector = SelectiveBuilder.get_nop_selector() |
|
|
|
if backend_key is None: |
|
|
|
return |
|
|
|
if class_name is None: |
|
|
|
|
|
|
|
|
|
class_name = backend_indices[backend_key].native_function_class_name() |
|
assert class_name is not None |
|
|
|
if impl_path is not None: |
|
error_on_missing_kernels( |
|
native_functions, |
|
backend_indices, |
|
backend_key, |
|
autograd_key, |
|
class_name, |
|
impl_path, |
|
) |
|
|
|
gen_dispatchkey_nativefunc_headers( |
|
fm, |
|
class_name, |
|
cpp_namespace, |
|
backend_indices, |
|
grouped_native_functions, |
|
backend_key, |
|
autograd_key, |
|
) |
|
|
|
for dispatch_key in ( |
|
[backend_key] if autograd_key is None else [backend_key, autograd_key] |
|
): |
|
gen_dispatcher_registrations( |
|
fm, |
|
output_dir, |
|
class_name, |
|
backend_indices, |
|
grouped_native_functions, |
|
backend_key, |
|
dispatch_key, |
|
selector, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|