from __future__ import annotations import argparse import os import re from collections import Counter, defaultdict, namedtuple from pathlib import Path from typing import TYPE_CHECKING import yaml import torchgen.api.dispatcher as dispatcher import torchgen.dest as dest from torchgen.api.types import DispatcherSignature from torchgen.code_template import CodeTemplate from torchgen.context import native_function_manager from torchgen.gen import get_grouped_native_functions, parse_native_yaml from torchgen.model import ( BackendIndex, BackendMetadata, DispatchKey, NativeFunction, NativeFunctionsGroup, OperatorName, ) from torchgen.selective_build.selector import SelectiveBuilder from torchgen.utils import concatMap, context, FileManager, NamespaceHelper, Target from torchgen.yaml_utils import YamlLoader if TYPE_CHECKING: from collections.abc import Sequence # Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key. # Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping) ParsedExternalYaml = namedtuple( "ParsedExternalYaml", ["backend_key", "autograd_key", "class_name", "cpp_namespace", "backend_indices"], ) def parse_backend_yaml( backend_yaml_path: str, grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_indices: dict[DispatchKey, BackendIndex], ) -> ParsedExternalYaml: native_functions_map: dict[OperatorName, NativeFunction] = { f.func.name: f for f in concatMap( lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions, ) } with open(backend_yaml_path) as f: yaml_values = yaml.load(f, Loader=YamlLoader) assert isinstance(yaml_values, dict) valid_keys = [ "backend", "class_name", "cpp_namespace", "extra_headers", "supported", "autograd", "full_codegen", "non_native", "ir_gen", "symint", ] backend = yaml_values.pop("backend", None) assert backend is not None, 'You must provide a value for "backend"' class_name = yaml_values.pop("class_name", None) cpp_namespace = yaml_values.pop("cpp_namespace", None) assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"' # Mostly just defaulting to false to stick with LazyTensor convention. use_out_as_primary = yaml_values.pop("use_out_as_primary", False) assert isinstance(use_out_as_primary, bool), ( f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}" ) use_device_guard = yaml_values.pop("device_guard", False) assert isinstance(use_device_guard, bool), ( f"You must provide either True or False for device_guard. Provided: {use_device_guard}" ) supported = yaml_values.pop("supported", []) if supported is None: supported = [] # Allow an empty list of supported ops assert isinstance(supported, list), ( f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})' ) symint = yaml_values.pop("symint", []) if symint is None: symint = [] # Allow an empty list of symint ops assert isinstance(symint, list), ( f'expected "symint" to be a list, but got: {supported} (of type {type(supported)})' ) symint_set = set(symint) supported_autograd = yaml_values.pop("autograd", []) assert isinstance(supported_autograd, list), ( f'expected "autograd" to be a list, but got: {supported_autograd}' ) # full_codegen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py full_codegen = yaml_values.pop("full_codegen", []) supported.extend(full_codegen) # non_native is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py yaml_values.pop("non_native", {}) # ir_gen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py yaml_values.pop("ir_gen", {}) assert len(yaml_values.keys()) == 0, ( f"{backend_yaml_path} contains unexpected keys: {', '.join(yaml_values.keys())}. " f"Only the following keys are supported: {', '.join(valid_keys)}" ) def create_backend_index( backend_ops: list[str], symint_ops: set[str], dispatch_key: DispatchKey, *, use_out_as_primary: bool, use_device_guard: bool, ) -> BackendIndex: metadata: dict[OperatorName, BackendMetadata] = {} for op in backend_ops: op_name = OperatorName.parse(op) assert op_name in native_functions_map, ( f"Found an invalid operator name: {op_name}" ) # See Note [External Backends Follow Dispatcher API] kernel_name = dispatcher.name(native_functions_map[op_name].func) if op in symint_ops: kernel_name += "_symint" # TODO: allow structured external backends later. m = BackendMetadata( kernel=kernel_name, structured=False, cpp_namespace=cpp_namespace ) metadata[op_name] = m return BackendIndex( dispatch_key=dispatch_key, use_out_as_primary=use_out_as_primary, external=True, device_guard=use_device_guard, index=metadata, ) backend_key: DispatchKey | None = None if len(supported) > 0: with context( lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.' ): backend_key = DispatchKey.parse(backend) backend_idx = create_backend_index( supported, symint_set, backend_key, use_out_as_primary=use_out_as_primary, use_device_guard=use_device_guard, ) assert backend_key not in backend_indices backend_indices[backend_key] = backend_idx autograd_key: DispatchKey | None = None if len(supported_autograd) > 0: with context( lambda: f'The "autograd" key was specified, which indicates that you would like to override \ the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.' ): autograd_key = DispatchKey.parse(f"Autograd{backend}") autograd_idx = create_backend_index( supported_autograd, symint_set, autograd_key, use_out_as_primary=use_out_as_primary, use_device_guard=use_device_guard, ) assert autograd_key not in backend_indices backend_indices[autograd_key] = autograd_idx for g in grouped_native_functions: if isinstance(g, NativeFunction): forward_kernels = ( [] if backend_key is None else [ m for m in [backend_indices[backend_key].get_kernel(g)] if m is not None ] ) backward_kernels = ( [] if autograd_key is None else [ m for m in [backend_indices[autograd_key].get_kernel(g)] if m is not None ] ) else: forward_kernels = ( [] if backend_key is None else [ m for m in [ backend_indices[backend_key].get_kernel(f) for f in g.functions() ] if m is not None ] ) backward_kernels = ( [] if autograd_key is None else [ m for m in [ backend_indices[autograd_key].get_kernel(f) for f in g.functions() ] if m is not None ] ) forward_kernels = [f for f in forward_kernels if f is not None] backward_kernels = [f for f in backward_kernels if f is not None] assert len(forward_kernels) == 0 or len(backward_kernels) == 0, ( f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \ autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \ {forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".' ) return ParsedExternalYaml( backend_key, autograd_key, class_name, cpp_namespace, backend_indices ) def error_on_missing_kernels( native_functions: Sequence[NativeFunction], backend_indices: dict[DispatchKey, BackendIndex], backend_key: DispatchKey, autograd_key: DispatchKey | None, class_name: str, kernel_defn_file_path: str, full_codegen: list[OperatorName] | None = None, ) -> None: try: with open(kernel_defn_file_path) as f: backend_defns = f.read() except OSError as e: raise AssertionError( f"Unable to read from the specified impl_path file: {kernel_defn_file_path}" ) from e if full_codegen is None: full_codegen = [] indices = [backend_indices[backend_key].index] + ( [] if autograd_key is None else [backend_indices[autograd_key].index] ) # Quick mapping from each OperatorName used by the external backend # to its backend kernel name expected_backend_op_names: dict[OperatorName, str] = dict( list( concatMap( lambda index: [ (op_name, metadata.kernel) for op_name, metadata in index.items() ], indices, ) ) ) expected_backend_native_funcs: list[NativeFunction] = [ f for f in native_functions if f.func.name in expected_backend_op_names.keys() and f.func.name not in full_codegen ] expected_backend_kernel_name_counts: dict[str, list[NativeFunction]] = defaultdict( list ) for native_f in expected_backend_native_funcs: expected_backend_kernel_name_counts[ expected_backend_op_names[native_f.func.name] ].append(native_f) # This just looks for lines containing "foo(", and assumes that the kernel foo has been implemented. # It might cause false negatives (we won't catch all cases), but that's ok - if we catch a missing kernel # here, then we get a nicer error message. If we miss it, you get a linker error. kernel_defn_regex = rf"(.*){class_name}::\s*([\w\d]*)\(" actual_backend_kernel_name_counts = Counter( # A bit unwieldy (this could probably be moved into regex), # but we don't want to include kernel names that come from function calls, # like "return torch_xla::XLANativeFunctions::empty_strided_symint(...)". # Easy check is to ignore any lines with colons before the class name. [ y for (x, y) in re.findall(kernel_defn_regex, backend_defns) if not x.endswith(":") ] ) missing_kernels_err_msg = "" for expected_name, funcs in expected_backend_kernel_name_counts.items(): expected_overload_count = len(funcs) actual_overload_count = actual_backend_kernel_name_counts[expected_name] if expected_overload_count != actual_overload_count: def create_decl(f: NativeFunction) -> str: with native_function_manager(f): return DispatcherSignature.from_schema(f.func).decl() expected_schemas_str = "\n".join([create_decl(f) for f in funcs]) missing_kernels_err_msg += f""" {class_name} is missing a kernel definition for {expected_name}. We found {actual_overload_count} kernel(s) with that name, but expected {expected_overload_count} kernel(s). The expected function schemas for the missing operator are: {expected_schemas_str} """ assert missing_kernels_err_msg == "", missing_kernels_err_msg def main() -> None: parser = argparse.ArgumentParser(description="Generate backend stub files") parser.add_argument( "-s", "--source-yaml", "--source_yaml", help="path to source yaml file containing operator external definitions", ) parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory") parser.add_argument( "--dry-run", "--dry_run", type=bool, default=False, help="output directory" ) parser.add_argument( "--impl-path", "--impl_path", type=str, default=None, help="path to the source C++ file containing kernel definitions", ) options = parser.parse_args() run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path) def gen_dispatchkey_nativefunc_headers( fm: FileManager, class_name: str, cpp_namespace: str, backend_indices: dict[DispatchKey, BackendIndex], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_dispatch_key: DispatchKey, autograd_dispatch_key: DispatchKey | None, backend_name: str = "", ) -> None: assert class_name is not None generated_comment = ( "Autogenerated file by gen_backend_stubs.py. Do not edit directly!" ) # Convert to a set first to remove duplicate kernel names. # Backends are allowed to repeat kernel names; only generate the declaration once! # Sort for deterministic output. backend_declarations = sorted( set( concatMap( lambda f: dest.compute_native_function_declaration( f, backend_indices[backend_dispatch_key] ), grouped_native_functions, ) ) ) autograd_declarations = sorted( set( concatMap( lambda f: [] if autograd_dispatch_key is None else dest.compute_native_function_declaration( f, backend_indices[autograd_dispatch_key] ), grouped_native_functions, ) ) ) ns_helper = NamespaceHelper(cpp_namespace) fm.write_with_template( f"{backend_dispatch_key}NativeFunctions.h", "DispatchKeyNativeFunctions.h", lambda: { "generated_comment": generated_comment, "namespace_prologue": ns_helper.prologue, "class_name": class_name, "namespace_epilogue": ns_helper.epilogue, "dispatch_declarations": backend_declarations + autograd_declarations, "BackendName": backend_name, "DispatchKey": backend_dispatch_key, }, ) def gen_dispatcher_registrations( fm: FileManager, output_dir: str, class_name: str, backend_indices: dict[DispatchKey, BackendIndex], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_dispatch_key: DispatchKey, dispatch_key: DispatchKey, selector: SelectiveBuilder, # build_in_tree is true for lazy TS backend and affects include paths, not used for external backends build_in_tree: bool = False, per_operator_headers: bool = False, backend_name: str = "", eager_registration: bool = True, ) -> None: headers = [ f"{output_dir}/{backend_dispatch_key}NativeFunctions.h", ] if build_in_tree: external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers) else: external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers) assert class_name is not None backend_index = backend_indices[dispatch_key] dispatch_registrations_body = list( concatMap( dest.RegisterDispatchKey( backend_index, Target.REGISTRATION, selector, rocm=False, symint=True, class_method_name=f"{class_name}", skip_dispatcher_op_registration=False, ), grouped_native_functions, ) ) newline = "\n" ns_helper = NamespaceHelper(namespace_str="at") deferred_dispatch_registrations = "" static_init_dispatch_registrations = "" if eager_registration: static_template = CodeTemplate( """\ TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) { $dispatch_registrations_body }""" ) static_init_dispatch_registrations = static_template.substitute( dispatch_key=dispatch_key, dispatch_registrations_body=dispatch_registrations_body, ) else: deferred_template = CodeTemplate( """\ TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions(); TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() { static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key); $dispatch_registrations_body }""" ) deferred_dispatch_registrations = deferred_template.substitute( backend_name=backend_name, dispatch_key=dispatch_key, dispatch_registrations_body=dispatch_registrations_body, ) fm.write_with_template( f"Register{dispatch_key}.cpp", "RegisterDispatchKey.cpp", lambda: { "extra_cuda_headers": "", "external_backend_headers": external_backend_headers_str, "ops_headers": "#include " if not per_operator_headers else "", "DispatchKey": dispatch_key, "dispatch_namespace": dispatch_key.lower(), "dispatch_headers": dest.gen_registration_headers( backend_index, per_operator_headers=per_operator_headers, rocm=False ), "dispatch_helpers": dest.gen_registration_helpers(backend_index), "dispatch_definitions": fm.substitute_with_template( "RegisterDispatchDefinitions.ini", lambda: { "ns_prologue": ns_helper.prologue, "ns_epilogue": ns_helper.epilogue, "static_init_dispatch_registrations": static_init_dispatch_registrations, "deferred_dispatch_registrations": deferred_dispatch_registrations, "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": "", "dispatch_anonymous_definitions": list( concatMap( dest.RegisterDispatchKey( backend_index, Target.ANONYMOUS_DEFINITION, selector, rocm=False, symint=True, class_method_name=f"{class_name}", skip_dispatcher_op_registration=False, ), grouped_native_functions, ) ), }, ).split(newline), }, ) def run( source_yaml: str, output_dir: str, dry_run: bool, impl_path: str | None = None ) -> None: # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py pytorch_root = Path(__file__).absolute().parent.parent template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") def make_file_manager(install_dir: str) -> FileManager: return FileManager( install_dir=install_dir, template_dir=template_dir, dry_run=dry_run ) fm = make_file_manager(output_dir) native_yaml_path = os.path.join( pytorch_root, "aten/src/ATen/native/native_functions.yaml" ) tags_yaml_path = os.path.join(pytorch_root, "aten/src/ATen/native/tags.yaml") parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) native_functions, backend_indices = ( parsed_yaml.native_functions, parsed_yaml.backend_indices, ) grouped_native_functions = get_grouped_native_functions(native_functions) parsed_backend_yaml = parse_backend_yaml( source_yaml, grouped_native_functions, backend_indices ) backend_key = parsed_backend_yaml.backend_key autograd_key = parsed_backend_yaml.autograd_key cpp_namespace = parsed_backend_yaml.cpp_namespace class_name = parsed_backend_yaml.class_name backend_indices = parsed_backend_yaml.backend_indices selector = SelectiveBuilder.get_nop_selector() if backend_key is None: # This could be useful if a backend wants to quickly set up a noop yaml file but doesn't have any kernels ready yet. return if class_name is None: # class_name is an optional argument to backend yaml file. # if specified it allows an external backend to override # the name of the class that all generated kernel definitions live under. # if not specified, its value is given as native_function_class_name. class_name = backend_indices[backend_key].native_function_class_name() assert class_name is not None if impl_path is not None: error_on_missing_kernels( native_functions, backend_indices, backend_key, autograd_key, class_name, impl_path, ) gen_dispatchkey_nativefunc_headers( fm, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, autograd_key, ) for dispatch_key in ( [backend_key] if autograd_key is None else [backend_key, autograd_key] ): gen_dispatcher_registrations( fm, output_dir, class_name, backend_indices, grouped_native_functions, backend_key, dispatch_key, selector, ) if __name__ == "__main__": main()