|
|
|
import torch |
|
|
|
|
|
class MkldnnLinear(torch.jit.ScriptModule): |
|
def __init__(self, dense_module, dtype): |
|
super().__init__() |
|
self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype)) |
|
if dense_module.bias is not None: |
|
|
|
|
|
self.register_buffer('bias', dense_module.bias.to_mkldnn()) |
|
else: |
|
|
|
self.register_buffer( |
|
'bias', |
|
torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn()) |
|
|
|
@torch.jit.script_method |
|
def __getstate__(self): |
|
return (self.weight.to_dense(), self.bias.to_dense(), self.training) |
|
|
|
@torch.jit.script_method |
|
def __setstate__(self, state): |
|
self.weight = state[0].to_mkldnn() |
|
self.bias = state[1].to_mkldnn() |
|
self.training = state[2] |
|
|
|
@torch.jit.script_method |
|
def forward(self, x): |
|
x_mkldnn = x if x.is_mkldnn else x.to_mkldnn() |
|
y_mkldnn = torch._C._nn.mkldnn_linear(x_mkldnn, self.weight, self.bias) |
|
y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense() |
|
return y |
|
|
|
|
|
class _MkldnnConvNd(torch.jit.ScriptModule): |
|
"""Common base of MkldnnConv1d and MkldnnConv2d.""" |
|
|
|
__constants__ = ['stride', 'padding', 'dilation', 'groups'] |
|
|
|
def __init__(self, dense_module): |
|
super().__init__() |
|
|
|
self.stride = dense_module.stride |
|
self.padding = dense_module.padding |
|
self.dilation = dense_module.dilation |
|
self.groups = dense_module.groups |
|
|
|
if dense_module.bias is not None: |
|
self.register_buffer('bias', dense_module.bias.to_mkldnn()) |
|
else: |
|
|
|
|
|
|
|
self.register_buffer( |
|
'bias', |
|
torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn()) |
|
|
|
@torch.jit.script_method |
|
def __getstate__(self): |
|
return (self.weight.to_dense(), self.bias.to_dense(), self.training) |
|
|
|
@torch.jit.script_method |
|
def forward(self, x): |
|
return torch.mkldnn_convolution( |
|
x, |
|
self.weight, |
|
self.bias, |
|
self.padding, |
|
self.stride, |
|
self.dilation, |
|
self.groups) |
|
|
|
|
|
class MkldnnConv1d(_MkldnnConvNd): |
|
def __init__(self, dense_module, dtype): |
|
super().__init__(dense_module) |
|
|
|
self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype)) |
|
|
|
@torch.jit.script_method |
|
def __setstate__(self, state): |
|
self.weight = state[0].to_mkldnn() |
|
self.bias = state[1].to_mkldnn() |
|
self.training = state[2] |
|
|
|
|
|
class MkldnnConv2d(_MkldnnConvNd): |
|
def __init__(self, dense_module, dtype): |
|
super().__init__(dense_module) |
|
|
|
self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv2d_weight( |
|
dense_module.weight.to_mkldnn(dtype), |
|
self.padding, |
|
self.stride, |
|
self.dilation, |
|
self.groups)) |
|
|
|
@torch.jit.script_method |
|
def __setstate__(self, state): |
|
self.weight = torch._C._nn.mkldnn_reorder_conv2d_weight( |
|
state[0].to_mkldnn(), |
|
self.padding, |
|
self.stride, |
|
self.dilation, |
|
self.groups) |
|
self.bias = state[1].to_mkldnn() |
|
self.training = state[2] |
|
|
|
class MkldnnConv3d(_MkldnnConvNd): |
|
def __init__(self, dense_module, dtype): |
|
super().__init__(dense_module) |
|
|
|
self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv3d_weight( |
|
dense_module.weight.to_mkldnn(dtype), |
|
self.padding, |
|
self.stride, |
|
self.dilation, |
|
self.groups)) |
|
|
|
@torch.jit.script_method |
|
def __setstate__(self, state): |
|
self.weight = torch._C._nn.mkldnn_reorder_conv3d_weight( |
|
state[0].to_mkldnn(), |
|
self.padding, |
|
self.stride, |
|
self.dilation, |
|
self.groups) |
|
self.bias = state[1].to_mkldnn() |
|
self.training = state[2] |
|
|
|
|
|
class MkldnnBatchNorm(torch.jit.ScriptModule): |
|
__constants__ = ['exponential_average_factor', 'eps'] |
|
|
|
def __init__(self, dense_module): |
|
super().__init__() |
|
|
|
assert not dense_module.training |
|
assert dense_module.track_running_stats |
|
assert dense_module.affine |
|
|
|
if dense_module.momentum is None: |
|
self.exponential_average_factor = 0.0 |
|
else: |
|
self.exponential_average_factor = dense_module.momentum |
|
self.eps = dense_module.eps |
|
|
|
self.register_buffer('weight', dense_module.weight.to_mkldnn()) |
|
self.register_buffer('bias', dense_module.bias.to_mkldnn()) |
|
self.register_buffer('running_mean', dense_module.running_mean.to_mkldnn()) |
|
self.register_buffer('running_var', dense_module.running_var.to_mkldnn()) |
|
|
|
@torch.jit.script_method |
|
def __getstate__(self): |
|
weight = self.weight.to_dense() |
|
bias = self.bias.to_dense() |
|
running_mean = self.running_mean.to_dense() |
|
running_var = self.running_var.to_dense() |
|
return (weight, bias, running_mean, running_var, self.training) |
|
|
|
@torch.jit.script_method |
|
def __setstate__(self, state): |
|
self.weight = state[0].to_mkldnn() |
|
self.bias = state[1].to_mkldnn() |
|
self.running_mean = state[2].to_mkldnn() |
|
self.running_var = state[3].to_mkldnn() |
|
self.training = state[4] |
|
|
|
@torch.jit.script_method |
|
def forward(self, x): |
|
return torch.batch_norm( |
|
x, |
|
self.weight, |
|
self.bias, |
|
self.running_mean, |
|
self.running_var, |
|
False, |
|
self.exponential_average_factor, |
|
self.eps, |
|
False, |
|
) |
|
|
|
class MkldnnPrelu(torch.jit.ScriptModule): |
|
def __init__(self, dense_module, dtype): |
|
super().__init__() |
|
self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype)) |
|
|
|
@torch.jit.script_method |
|
def __getstate__(self): |
|
return (self.weight.to_dense(), self.training) |
|
|
|
@torch.jit.script_method |
|
def __setstate__(self, state): |
|
self.weight = state[0].to_mkldnn() |
|
self.training = state[1] |
|
|
|
@torch.jit.script_method |
|
def forward(self, x): |
|
x_mkldnn = x if x.is_mkldnn else x.to_mkldnn() |
|
y_mkldnn = torch.prelu(x_mkldnn, self.weight) |
|
y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense() |
|
return y |
|
|
|
def to_mkldnn(module, dtype=torch.float): |
|
assert dtype in [torch.float, torch.bfloat16, torch.half], \ |
|
"MKLDNN only support float, bfloat16, and half path now" |
|
|
|
def m_fn(m, d): |
|
if isinstance(m, torch.nn.Linear): |
|
return MkldnnLinear(m, d) |
|
elif isinstance(m, torch.nn.Conv1d): |
|
return MkldnnConv1d(m, d) |
|
elif isinstance(m, torch.nn.Conv2d): |
|
return MkldnnConv2d(m, d) |
|
elif isinstance(m, torch.nn.Conv3d): |
|
return MkldnnConv3d(m, d) |
|
elif isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)): |
|
|
|
|
|
return MkldnnBatchNorm(m) |
|
elif isinstance(m, torch.nn.PReLU): |
|
return MkldnnPrelu(m, d) |
|
else: |
|
return m |
|
|
|
def m_fn_rec(m, d): |
|
new_m = m_fn(m, d) |
|
for name, sub_m in m.named_children(): |
|
setattr(new_m, name, m_fn_rec(sub_m, d)) |
|
return new_m |
|
|
|
return m_fn_rec(module, dtype) |
|
|