File size: 7,908 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# mypy: allow-untyped-defs
import torch


class MkldnnLinear(torch.jit.ScriptModule):
    def __init__(self, dense_module, dtype):
        super().__init__()
        self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype))
        if dense_module.bias is not None:
            # Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy,
            # we use fp32 dtype.
            self.register_buffer('bias', dense_module.bias.to_mkldnn())
        else:
            # TODO: Remove this once ScriptModule supports registering None buffer
            self.register_buffer(
                'bias',
                torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn())

    @torch.jit.script_method
    def __getstate__(self):
        return (self.weight.to_dense(), self.bias.to_dense(), self.training)

    @torch.jit.script_method
    def __setstate__(self, state):
        self.weight = state[0].to_mkldnn()
        self.bias = state[1].to_mkldnn()
        self.training = state[2]

    @torch.jit.script_method
    def forward(self, x):
        x_mkldnn = x if x.is_mkldnn else x.to_mkldnn()
        y_mkldnn = torch._C._nn.mkldnn_linear(x_mkldnn, self.weight, self.bias)
        y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense()
        return y


class _MkldnnConvNd(torch.jit.ScriptModule):
    """Common base of MkldnnConv1d and MkldnnConv2d."""

    __constants__ = ['stride', 'padding', 'dilation', 'groups']

    def __init__(self, dense_module):
        super().__init__()

        self.stride = dense_module.stride
        self.padding = dense_module.padding
        self.dilation = dense_module.dilation
        self.groups = dense_module.groups

        if dense_module.bias is not None:
            self.register_buffer('bias', dense_module.bias.to_mkldnn())
        else:
            # Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy,
            # we use fp32 dtype.
            # TODO: Remove this once ScriptModule supports registering None buffer
            self.register_buffer(
                'bias',
                torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn())

    @torch.jit.script_method
    def __getstate__(self):
        return (self.weight.to_dense(), self.bias.to_dense(), self.training)

    @torch.jit.script_method
    def forward(self, x):
        return torch.mkldnn_convolution(
            x,
            self.weight,
            self.bias,
            self.padding,
            self.stride,
            self.dilation,
            self.groups)


class MkldnnConv1d(_MkldnnConvNd):
    def __init__(self, dense_module, dtype):
        super().__init__(dense_module)

        self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype))

    @torch.jit.script_method
    def __setstate__(self, state):
        self.weight = state[0].to_mkldnn()
        self.bias = state[1].to_mkldnn()
        self.training = state[2]


class MkldnnConv2d(_MkldnnConvNd):
    def __init__(self, dense_module, dtype):
        super().__init__(dense_module)

        self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv2d_weight(
            dense_module.weight.to_mkldnn(dtype),
            self.padding,
            self.stride,
            self.dilation,
            self.groups))

    @torch.jit.script_method
    def __setstate__(self, state):
        self.weight = torch._C._nn.mkldnn_reorder_conv2d_weight(
            state[0].to_mkldnn(),
            self.padding,
            self.stride,
            self.dilation,
            self.groups)
        self.bias = state[1].to_mkldnn()
        self.training = state[2]

class MkldnnConv3d(_MkldnnConvNd):
    def __init__(self, dense_module, dtype):
        super().__init__(dense_module)

        self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv3d_weight(
            dense_module.weight.to_mkldnn(dtype),
            self.padding,
            self.stride,
            self.dilation,
            self.groups))

    @torch.jit.script_method
    def __setstate__(self, state):
        self.weight = torch._C._nn.mkldnn_reorder_conv3d_weight(
            state[0].to_mkldnn(),
            self.padding,
            self.stride,
            self.dilation,
            self.groups)
        self.bias = state[1].to_mkldnn()
        self.training = state[2]


class MkldnnBatchNorm(torch.jit.ScriptModule):
    __constants__ = ['exponential_average_factor', 'eps']

    def __init__(self, dense_module):
        super().__init__()

        assert not dense_module.training
        assert dense_module.track_running_stats
        assert dense_module.affine

        if dense_module.momentum is None:
            self.exponential_average_factor = 0.0
        else:
            self.exponential_average_factor = dense_module.momentum
        self.eps = dense_module.eps

        self.register_buffer('weight', dense_module.weight.to_mkldnn())
        self.register_buffer('bias', dense_module.bias.to_mkldnn())
        self.register_buffer('running_mean', dense_module.running_mean.to_mkldnn())
        self.register_buffer('running_var', dense_module.running_var.to_mkldnn())

    @torch.jit.script_method
    def __getstate__(self):
        weight = self.weight.to_dense()
        bias = self.bias.to_dense()
        running_mean = self.running_mean.to_dense()
        running_var = self.running_var.to_dense()
        return (weight, bias, running_mean, running_var, self.training)

    @torch.jit.script_method
    def __setstate__(self, state):
        self.weight = state[0].to_mkldnn()
        self.bias = state[1].to_mkldnn()
        self.running_mean = state[2].to_mkldnn()
        self.running_var = state[3].to_mkldnn()
        self.training = state[4]

    @torch.jit.script_method
    def forward(self, x):
        return torch.batch_norm(
            x,
            self.weight,
            self.bias,
            self.running_mean,
            self.running_var,
            False,  # training
            self.exponential_average_factor,
            self.eps,
            False,  # cuda_enabled
        )

class MkldnnPrelu(torch.jit.ScriptModule):
    def __init__(self, dense_module, dtype):
        super().__init__()
        self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype))

    @torch.jit.script_method
    def __getstate__(self):
        return (self.weight.to_dense(), self.training)

    @torch.jit.script_method
    def __setstate__(self, state):
        self.weight = state[0].to_mkldnn()
        self.training = state[1]

    @torch.jit.script_method
    def forward(self, x):
        x_mkldnn = x if x.is_mkldnn else x.to_mkldnn()
        y_mkldnn = torch.prelu(x_mkldnn, self.weight)
        y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense()
        return y

def to_mkldnn(module, dtype=torch.float):
    assert dtype in [torch.float, torch.bfloat16, torch.half], \
        "MKLDNN only support float, bfloat16, and half path now"

    def m_fn(m, d):
        if isinstance(m, torch.nn.Linear):
            return MkldnnLinear(m, d)
        elif isinstance(m, torch.nn.Conv1d):
            return MkldnnConv1d(m, d)
        elif isinstance(m, torch.nn.Conv2d):
            return MkldnnConv2d(m, d)
        elif isinstance(m, torch.nn.Conv3d):
            return MkldnnConv3d(m, d)
        elif isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
            # For batchnorm bf16 path, OneDNN requires weight and bias need fp32 dtype.
            # so it doesn't need dtype argument.
            return MkldnnBatchNorm(m)
        elif isinstance(m, torch.nn.PReLU):
            return MkldnnPrelu(m, d)
        else:
            return m

    def m_fn_rec(m, d):
        new_m = m_fn(m, d)
        for name, sub_m in m.named_children():
            setattr(new_m, name, m_fn_rec(sub_m, d))
        return new_m

    return m_fn_rec(module, dtype)