|
|
|
r"""Implementation for Stochastic Gradient Descent optimizer.""" |
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_default_to_fused_or_foreach, |
|
_device_dtype_check_for_fused, |
|
_differentiable_doc, |
|
_foreach_doc, |
|
_fused_doc, |
|
_maximize_doc, |
|
_params_doc, |
|
_use_grad_for_differentiable, |
|
DeviceDict, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["SGD", "sgd"] |
|
|
|
|
|
class SGD(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 1e-3, |
|
momentum: float = 0, |
|
dampening: float = 0, |
|
weight_decay: Union[float, Tensor] = 0, |
|
nesterov: bool = False, |
|
*, |
|
maximize: bool = False, |
|
foreach: Optional[bool] = None, |
|
differentiable: bool = False, |
|
fused: Optional[bool] = None, |
|
): |
|
if isinstance(lr, Tensor) and lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if lr < 0.0: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if momentum < 0.0: |
|
raise ValueError(f"Invalid momentum value: {momentum}") |
|
if weight_decay < 0.0: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
momentum=momentum, |
|
dampening=dampening, |
|
weight_decay=weight_decay, |
|
nesterov=nesterov, |
|
maximize=maximize, |
|
foreach=foreach, |
|
differentiable=differentiable, |
|
fused=fused, |
|
) |
|
if nesterov and (momentum <= 0 or dampening != 0): |
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening") |
|
super().__init__(params, defaults) |
|
|
|
if fused: |
|
self._step_supports_amp_scaling = True |
|
self._need_device_dtype_check_for_fused = True |
|
if differentiable: |
|
raise RuntimeError("`fused` does not support `differentiable`") |
|
if foreach: |
|
raise RuntimeError("`fused` and `foreach` cannot be `True` together.") |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("nesterov", False) |
|
group.setdefault("maximize", False) |
|
group.setdefault("foreach", None) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("fused", False) |
|
|
|
def _init_group(self, group, params, grads, momentum_buffer_list): |
|
has_sparse_grad = False |
|
|
|
for p in group["params"]: |
|
if p.grad is not None: |
|
if group["fused"] and getattr( |
|
self, "_need_device_dtype_check_for_fused", True |
|
): |
|
_device_dtype_check_for_fused(p) |
|
self._need_device_dtype_check_for_fused = False |
|
params.append(p) |
|
grads.append(p.grad) |
|
if p.grad.is_sparse: |
|
has_sparse_grad = True |
|
|
|
if group["momentum"] != 0: |
|
state = self.state[p] |
|
momentum_buffer_list.append(state.get("momentum_buffer")) |
|
|
|
return has_sparse_grad |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
momentum_buffer_list: list[Optional[Tensor]] = [] |
|
|
|
has_sparse_grad = self._init_group( |
|
group, params, grads, momentum_buffer_list |
|
) |
|
|
|
sgd( |
|
params, |
|
grads, |
|
momentum_buffer_list, |
|
weight_decay=group["weight_decay"], |
|
momentum=group["momentum"], |
|
lr=group["lr"], |
|
dampening=group["dampening"], |
|
nesterov=group["nesterov"], |
|
maximize=group["maximize"], |
|
has_sparse_grad=has_sparse_grad, |
|
foreach=group["foreach"], |
|
fused=group["fused"], |
|
grad_scale=getattr(self, "grad_scale", None), |
|
found_inf=getattr(self, "found_inf", None), |
|
) |
|
|
|
if group["momentum"] != 0: |
|
|
|
for p, momentum_buffer in zip(params, momentum_buffer_list): |
|
state = self.state[p] |
|
state["momentum_buffer"] = momentum_buffer |
|
|
|
return loss |
|
|
|
|
|
SGD.__doc__ = ( |
|
r"""Implements stochastic gradient descent (optionally with momentum). |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) |
|
\text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ |
|
&\hspace{13mm} \:\mu \text{ (momentum)}, \:\tau \text{ (dampening)}, |
|
\:\textit{ nesterov,}\:\textit{ maximize} \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm}\textbf{if} \: \mu \neq 0 \\ |
|
&\hspace{10mm}\textbf{if} \: t > 1 \\ |
|
&\hspace{15mm} \textbf{b}_t \leftarrow \mu \textbf{b}_{t-1} + (1-\tau) g_t \\ |
|
&\hspace{10mm}\textbf{else} \\ |
|
&\hspace{15mm} \textbf{b}_t \leftarrow g_t \\ |
|
&\hspace{10mm}\textbf{if} \: \textit{nesterov} \\ |
|
&\hspace{15mm} g_t \leftarrow g_{t} + \mu \textbf{b}_t \\ |
|
&\hspace{10mm}\textbf{else} \\[-1.ex] |
|
&\hspace{15mm} g_t \leftarrow \textbf{b}_t \\ |
|
&\hspace{5mm}\textbf{if} \: \textit{maximize} \\ |
|
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} + \gamma g_t \\[-1.ex] |
|
&\hspace{5mm}\textbf{else} \\[-1.ex] |
|
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma g_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
Nesterov momentum is based on the formula from |
|
`On the importance of initialization and momentum in deep learning`__. |
|
""" |
|
+ rf""" |
|
Args: |
|
{_params_doc} |
|
lr (float, Tensor, optional): learning rate (default: 1e-3) |
|
momentum (float, optional): momentum factor (default: 0) |
|
dampening (float, optional): dampening for momentum (default: 0) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
nesterov (bool, optional): enables Nesterov momentum. Only applicable |
|
when momentum is non-zero. (default: False) |
|
{_maximize_doc} |
|
{_foreach_doc} |
|
{_differentiable_doc} |
|
{_fused_doc} |
|
""" |
|
+ r""" |
|
|
|
Example: |
|
>>> # xdoctest: +SKIP |
|
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) |
|
>>> optimizer.zero_grad() |
|
>>> loss_fn(model(input), target).backward() |
|
>>> optimizer.step() |
|
|
|
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf |
|
|
|
.. note:: |
|
The implementation of SGD with Momentum/Nesterov subtly differs from |
|
Sutskever et al. and implementations in some other frameworks. |
|
|
|
Considering the specific case of Momentum, the update can be written as |
|
|
|
.. math:: |
|
\begin{aligned} |
|
v_{t+1} & = \mu * v_{t} + g_{t+1}, \\ |
|
p_{t+1} & = p_{t} - \text{lr} * v_{t+1}, |
|
\end{aligned} |
|
|
|
where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the |
|
parameters, gradient, velocity, and momentum respectively. |
|
|
|
This is in contrast to Sutskever et al. and |
|
other frameworks which employ an update of the form |
|
|
|
.. math:: |
|
\begin{aligned} |
|
v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\ |
|
p_{t+1} & = p_{t} - v_{t+1}. |
|
\end{aligned} |
|
|
|
The Nesterov version is analogously modified. |
|
|
|
Moreover, the initial value of the momentum buffer is set to the |
|
gradient value at the first step. This is in contrast to some other |
|
frameworks that initialize it to all zeros. |
|
|
|
""" |
|
) |
|
|
|
|
|
def sgd( |
|
params: list[Tensor], |
|
d_p_list: list[Tensor], |
|
momentum_buffer_list: list[Optional[Tensor]], |
|
|
|
|
|
has_sparse_grad: bool = False, |
|
foreach: Optional[bool] = None, |
|
fused: Optional[bool] = None, |
|
grad_scale: Optional[Tensor] = None, |
|
found_inf: Optional[Tensor] = None, |
|
*, |
|
weight_decay: float, |
|
momentum: float, |
|
lr: float, |
|
dampening: float, |
|
nesterov: bool, |
|
maximize: bool, |
|
): |
|
r"""Functional API that performs SGD algorithm computation. |
|
|
|
See :class:`~torch.optim.SGD` for details. |
|
""" |
|
|
|
|
|
|
|
|
|
if foreach is None and fused is None: |
|
|
|
|
|
if not torch.jit.is_scripting(): |
|
fused, foreach = _default_to_fused_or_foreach( |
|
params, differentiable=False, use_fused=False |
|
) |
|
else: |
|
foreach = False |
|
fused = False |
|
if foreach is None: |
|
foreach = False |
|
if fused is None: |
|
fused = False |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
if fused and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with fused optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_sgd |
|
elif fused and not torch.jit.is_scripting(): |
|
func = _fused_sgd |
|
else: |
|
func = _single_tensor_sgd |
|
|
|
func( |
|
params, |
|
d_p_list, |
|
momentum_buffer_list, |
|
weight_decay=weight_decay, |
|
momentum=momentum, |
|
lr=lr, |
|
dampening=dampening, |
|
nesterov=nesterov, |
|
has_sparse_grad=has_sparse_grad, |
|
maximize=maximize, |
|
grad_scale=grad_scale, |
|
found_inf=found_inf, |
|
) |
|
|
|
|
|
def _single_tensor_sgd( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
momentum_buffer_list: list[Optional[Tensor]], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
weight_decay: float, |
|
momentum: float, |
|
lr: float, |
|
dampening: float, |
|
nesterov: bool, |
|
maximize: bool, |
|
has_sparse_grad: bool, |
|
): |
|
assert grad_scale is None and found_inf is None |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] if not maximize else -grads[i] |
|
|
|
if weight_decay != 0: |
|
|
|
if isinstance(weight_decay, Tensor): |
|
if weight_decay.requires_grad: |
|
|
|
grad = grad.addcmul_(param.clone(), weight_decay) |
|
else: |
|
grad = grad.add(param, alpha=weight_decay) |
|
else: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
if momentum != 0: |
|
buf = momentum_buffer_list[i] |
|
|
|
if buf is None: |
|
buf = torch.clone(grad).detach() |
|
momentum_buffer_list[i] = buf |
|
else: |
|
buf.mul_(momentum).add_(grad, alpha=1 - dampening) |
|
|
|
if nesterov: |
|
grad = grad.add(buf, alpha=momentum) |
|
else: |
|
grad = buf |
|
|
|
|
|
if isinstance(lr, Tensor): |
|
if lr.requires_grad: |
|
param.addcmul_(grad, lr, value=-1) |
|
else: |
|
param.add_(grad, alpha=-lr) |
|
else: |
|
param.add_(grad, alpha=-lr) |
|
|
|
|
|
def _multi_tensor_sgd( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
momentum_buffer_list: list[Optional[Tensor]], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
weight_decay: float, |
|
momentum: float, |
|
lr: float, |
|
dampening: float, |
|
nesterov: bool, |
|
maximize: bool, |
|
has_sparse_grad: bool, |
|
): |
|
assert grad_scale is None and found_inf is None |
|
|
|
if len(params) == 0: |
|
return |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, momentum_buffer_list], with_indices=True |
|
) |
|
|
|
for ( |
|
device_params_, |
|
device_grads_, |
|
device_momentum_buffer_list, |
|
), indices in grouped_tensors.values(): |
|
device_params: list[Tensor] = cast(list[Tensor], device_params_) |
|
device_grads: list[Tensor] = cast(list[Tensor], device_grads_) |
|
|
|
device_has_sparse_grad = has_sparse_grad and any( |
|
grad.is_sparse for grad in device_grads |
|
) |
|
|
|
if maximize: |
|
device_grads = torch._foreach_neg(device_grads) |
|
|
|
if weight_decay != 0: |
|
|
|
if maximize: |
|
torch._foreach_add_(device_grads, device_params, alpha=weight_decay) |
|
else: |
|
device_grads = torch._foreach_add( |
|
device_grads, device_params, alpha=weight_decay |
|
) |
|
|
|
if momentum != 0: |
|
bufs: list[Tensor] = [] |
|
|
|
all_states_with_momentum_buffer = True |
|
for i in range(len(device_momentum_buffer_list)): |
|
if device_momentum_buffer_list[i] is None: |
|
all_states_with_momentum_buffer = False |
|
break |
|
else: |
|
bufs.append(cast(Tensor, device_momentum_buffer_list[i])) |
|
|
|
if all_states_with_momentum_buffer: |
|
torch._foreach_mul_(bufs, momentum) |
|
torch._foreach_add_(bufs, device_grads, alpha=1 - dampening) |
|
else: |
|
bufs = [] |
|
for i in range(len(device_momentum_buffer_list)): |
|
if device_momentum_buffer_list[i] is None: |
|
buf = device_momentum_buffer_list[i] = momentum_buffer_list[ |
|
indices[i] |
|
] = torch.clone(device_grads[i]).detach() |
|
else: |
|
buf = cast(Tensor, device_momentum_buffer_list[i]) |
|
buf.mul_(momentum).add_(device_grads[i], alpha=1 - dampening) |
|
|
|
bufs.append(buf) |
|
|
|
if nesterov: |
|
torch._foreach_add_(device_grads, bufs, alpha=momentum) |
|
else: |
|
device_grads = bufs |
|
|
|
if not device_has_sparse_grad: |
|
|
|
if isinstance(lr, torch.Tensor) and torch.compiler.is_compiling(): |
|
grads_x_lr = torch._foreach_mul(device_grads, -lr) |
|
torch._foreach_add_(device_params, grads_x_lr) |
|
else: |
|
torch._foreach_add_(device_params, device_grads, alpha=-lr) |
|
else: |
|
|
|
for i in range(len(device_params)): |
|
device_params[i].add_(device_grads[i], alpha=-lr) |
|
|
|
|
|
def _fused_sgd( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
momentum_buffer_list: list[Optional[Tensor]], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
weight_decay: float, |
|
momentum: float, |
|
lr: float, |
|
dampening: float, |
|
nesterov: bool, |
|
maximize: bool, |
|
has_sparse_grad: bool, |
|
) -> None: |
|
if not params: |
|
return |
|
if has_sparse_grad: |
|
raise RuntimeError("`_fused_sgd` does not support sparse gradients") |
|
grad_scale_dict: DeviceDict = ( |
|
{grad_scale.device: grad_scale} if grad_scale is not None else {} |
|
) |
|
found_inf_dict: DeviceDict = ( |
|
{found_inf.device: found_inf} if found_inf is not None else {} |
|
) |
|
|
|
no_momentum_buffer = momentum == 0 |
|
is_first_step = ( |
|
all(t is None for t in momentum_buffer_list) and not no_momentum_buffer |
|
) |
|
if is_first_step: |
|
for i, g in enumerate(grads): |
|
momentum_buffer_list[i] = torch.empty_like(g) |
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, momentum_buffer_list], with_indices=False |
|
) |
|
for (device, _), ( |
|
(device_params_, device_grads_, device_momentum_buffer_list), |
|
_, |
|
) in grouped_tensors.items(): |
|
device_params: list[Tensor] = cast(list[Tensor], device_params_) |
|
device_grads: list[Tensor] = cast(list[Tensor], device_grads_) |
|
device_grad_scale, device_found_inf = None, None |
|
if grad_scale is not None: |
|
device_grad_scale = grad_scale_dict.setdefault( |
|
device, grad_scale.to(device) |
|
) |
|
if found_inf_dict is not None and found_inf is not None: |
|
device_found_inf = found_inf_dict.setdefault(device, found_inf.to(device)) |
|
torch._fused_sgd_( |
|
device_params, |
|
device_grads, |
|
[] |
|
if no_momentum_buffer |
|
else cast(list[Tensor], device_momentum_buffer_list), |
|
weight_decay=weight_decay, |
|
momentum=momentum, |
|
lr=lr, |
|
dampening=dampening, |
|
nesterov=nesterov, |
|
maximize=maximize, |
|
is_first_step=is_first_step, |
|
grad_scale=device_grad_scale, |
|
found_inf=device_found_inf, |
|
) |
|
|