File size: 19,761 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
# mypy: allow-untyped-defs
r"""Implementation for Stochastic Gradient Descent optimizer."""
from typing import cast, Optional, Union
import torch
from torch import Tensor
from .optimizer import (
_default_to_fused_or_foreach,
_device_dtype_check_for_fused,
_differentiable_doc,
_foreach_doc,
_fused_doc,
_maximize_doc,
_params_doc,
_use_grad_for_differentiable,
DeviceDict,
Optimizer,
ParamsT,
)
__all__ = ["SGD", "sgd"]
class SGD(Optimizer): # noqa: D101
def __init__(
self,
params: ParamsT,
lr: Union[float, Tensor] = 1e-3,
momentum: float = 0,
dampening: float = 0,
weight_decay: Union[float, Tensor] = 0,
nesterov: bool = False,
*,
maximize: bool = False,
foreach: Optional[bool] = None,
differentiable: bool = False,
fused: Optional[bool] = None,
): # noqa: D107
if isinstance(lr, Tensor) and lr.numel() != 1:
raise ValueError("Tensor lr must be 1-element")
if lr < 0.0:
raise ValueError(f"Invalid learning rate: {lr}")
if momentum < 0.0:
raise ValueError(f"Invalid momentum value: {momentum}")
if weight_decay < 0.0:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
maximize=maximize,
foreach=foreach,
differentiable=differentiable,
fused=fused,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super().__init__(params, defaults)
if fused:
self._step_supports_amp_scaling = True
self._need_device_dtype_check_for_fused = True
if differentiable:
raise RuntimeError("`fused` does not support `differentiable`")
if foreach:
raise RuntimeError("`fused` and `foreach` cannot be `True` together.")
def __setstate__(self, state): # noqa: D105
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
group.setdefault("maximize", False)
group.setdefault("foreach", None)
group.setdefault("differentiable", False)
group.setdefault("fused", False)
def _init_group(self, group, params, grads, momentum_buffer_list):
has_sparse_grad = False
for p in group["params"]:
if p.grad is not None:
if group["fused"] and getattr(
self, "_need_device_dtype_check_for_fused", True
):
_device_dtype_check_for_fused(p)
self._need_device_dtype_check_for_fused = False
params.append(p)
grads.append(p.grad)
if p.grad.is_sparse:
has_sparse_grad = True
if group["momentum"] != 0:
state = self.state[p]
momentum_buffer_list.append(state.get("momentum_buffer"))
return has_sparse_grad
@_use_grad_for_differentiable
def step(self, closure=None):
"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params: list[Tensor] = []
grads: list[Tensor] = []
momentum_buffer_list: list[Optional[Tensor]] = []
has_sparse_grad = self._init_group(
group, params, grads, momentum_buffer_list
)
sgd(
params,
grads,
momentum_buffer_list,
weight_decay=group["weight_decay"],
momentum=group["momentum"],
lr=group["lr"],
dampening=group["dampening"],
nesterov=group["nesterov"],
maximize=group["maximize"],
has_sparse_grad=has_sparse_grad,
foreach=group["foreach"],
fused=group["fused"],
grad_scale=getattr(self, "grad_scale", None),
found_inf=getattr(self, "found_inf", None),
)
if group["momentum"] != 0:
# update momentum_buffers in state
for p, momentum_buffer in zip(params, momentum_buffer_list):
state = self.state[p]
state["momentum_buffer"] = momentum_buffer
return loss
SGD.__doc__ = (
r"""Implements stochastic gradient descent (optionally with momentum).
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta)
\text{ (objective)}, \: \lambda \text{ (weight decay)}, \\
&\hspace{13mm} \:\mu \text{ (momentum)}, \:\tau \text{ (dampening)},
\:\textit{ nesterov,}\:\textit{ maximize} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
&\hspace{5mm}\textbf{if} \: \mu \neq 0 \\
&\hspace{10mm}\textbf{if} \: t > 1 \\
&\hspace{15mm} \textbf{b}_t \leftarrow \mu \textbf{b}_{t-1} + (1-\tau) g_t \\
&\hspace{10mm}\textbf{else} \\
&\hspace{15mm} \textbf{b}_t \leftarrow g_t \\
&\hspace{10mm}\textbf{if} \: \textit{nesterov} \\
&\hspace{15mm} g_t \leftarrow g_{t} + \mu \textbf{b}_t \\
&\hspace{10mm}\textbf{else} \\[-1.ex]
&\hspace{15mm} g_t \leftarrow \textbf{b}_t \\
&\hspace{5mm}\textbf{if} \: \textit{maximize} \\
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} + \gamma g_t \\[-1.ex]
&\hspace{5mm}\textbf{else} \\[-1.ex]
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma g_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
"""
+ rf"""
Args:
{_params_doc}
lr (float, Tensor, optional): learning rate (default: 1e-3)
momentum (float, optional): momentum factor (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
nesterov (bool, optional): enables Nesterov momentum. Only applicable
when momentum is non-zero. (default: False)
{_maximize_doc}
{_foreach_doc}
{_differentiable_doc}
{_fused_doc}
"""
+ r"""
Example:
>>> # xdoctest: +SKIP
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
\begin{aligned}
v_{t+1} & = \mu * v_{t} + g_{t+1}, \\
p_{t+1} & = p_{t} - \text{lr} * v_{t+1},
\end{aligned}
where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the
parameters, gradient, velocity, and momentum respectively.
This is in contrast to Sutskever et al. and
other frameworks which employ an update of the form
.. math::
\begin{aligned}
v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\
p_{t+1} & = p_{t} - v_{t+1}.
\end{aligned}
The Nesterov version is analogously modified.
Moreover, the initial value of the momentum buffer is set to the
gradient value at the first step. This is in contrast to some other
frameworks that initialize it to all zeros.
"""
)
def sgd(
params: list[Tensor],
d_p_list: list[Tensor],
momentum_buffer_list: list[Optional[Tensor]],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
has_sparse_grad: bool = False,
foreach: Optional[bool] = None,
fused: Optional[bool] = None,
grad_scale: Optional[Tensor] = None,
found_inf: Optional[Tensor] = None,
*,
weight_decay: float,
momentum: float,
lr: float,
dampening: float,
nesterov: bool,
maximize: bool,
):
r"""Functional API that performs SGD algorithm computation.
See :class:`~torch.optim.SGD` for details.
"""
# Respect when the user inputs False/True for foreach or fused. We only want to change
# the default when neither have been user-specified. Note that we default to foreach
# and pass False to use_fused. This is not a mistake--we want to give the fused impl
# bake-in time before making it the default, even if it is typically faster.
if foreach is None and fused is None:
# why must we be explicit about an if statement for torch.jit.is_scripting here?
# because JIT can't handle Optionals nor fancy conditionals when scripting
if not torch.jit.is_scripting():
fused, foreach = _default_to_fused_or_foreach(
params, differentiable=False, use_fused=False
)
else:
foreach = False
fused = False
if foreach is None:
foreach = False
if fused is None:
fused = False
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if fused and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with fused optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_sgd
elif fused and not torch.jit.is_scripting():
func = _fused_sgd
else:
func = _single_tensor_sgd
func(
params,
d_p_list,
momentum_buffer_list,
weight_decay=weight_decay,
momentum=momentum,
lr=lr,
dampening=dampening,
nesterov=nesterov,
has_sparse_grad=has_sparse_grad,
maximize=maximize,
grad_scale=grad_scale,
found_inf=found_inf,
)
def _single_tensor_sgd(
params: list[Tensor],
grads: list[Tensor],
momentum_buffer_list: list[Optional[Tensor]],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
weight_decay: float,
momentum: float,
lr: float,
dampening: float,
nesterov: bool,
maximize: bool,
has_sparse_grad: bool,
):
assert grad_scale is None and found_inf is None
for i, param in enumerate(params):
grad = grads[i] if not maximize else -grads[i]
if weight_decay != 0:
# Nested if is necessary to bypass jitscript rules
if isinstance(weight_decay, Tensor):
if weight_decay.requires_grad:
# usually this is the differentiable path, which is why the param.clone() is needed
grad = grad.addcmul_(param.clone(), weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
if momentum != 0:
buf = momentum_buffer_list[i]
if buf is None:
buf = torch.clone(grad).detach()
momentum_buffer_list[i] = buf
else:
buf.mul_(momentum).add_(grad, alpha=1 - dampening)
if nesterov:
grad = grad.add(buf, alpha=momentum)
else:
grad = buf
# Nested if is necessary to bypass jitscript rules
if isinstance(lr, Tensor):
if lr.requires_grad:
param.addcmul_(grad, lr, value=-1)
else:
param.add_(grad, alpha=-lr)
else:
param.add_(grad, alpha=-lr)
def _multi_tensor_sgd(
params: list[Tensor],
grads: list[Tensor],
momentum_buffer_list: list[Optional[Tensor]],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
weight_decay: float,
momentum: float,
lr: float,
dampening: float,
nesterov: bool,
maximize: bool,
has_sparse_grad: bool,
):
assert grad_scale is None and found_inf is None
if len(params) == 0:
return
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
[params, grads, momentum_buffer_list], with_indices=True # type: ignore[list-item]
)
for (
device_params_,
device_grads_,
device_momentum_buffer_list,
), indices in grouped_tensors.values():
device_params: list[Tensor] = cast(list[Tensor], device_params_)
device_grads: list[Tensor] = cast(list[Tensor], device_grads_)
device_has_sparse_grad = has_sparse_grad and any(
grad.is_sparse for grad in device_grads
)
if maximize:
device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment]
if weight_decay != 0:
# Re-use the intermediate memory (device_grads) already allocated for maximize
if maximize:
torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
else:
device_grads = torch._foreach_add( # type: ignore[assignment]
device_grads, device_params, alpha=weight_decay
)
if momentum != 0:
bufs: list[Tensor] = []
all_states_with_momentum_buffer = True
for i in range(len(device_momentum_buffer_list)):
if device_momentum_buffer_list[i] is None:
all_states_with_momentum_buffer = False
break
else:
bufs.append(cast(Tensor, device_momentum_buffer_list[i]))
if all_states_with_momentum_buffer:
torch._foreach_mul_(bufs, momentum)
torch._foreach_add_(bufs, device_grads, alpha=1 - dampening)
else:
bufs = []
for i in range(len(device_momentum_buffer_list)):
if device_momentum_buffer_list[i] is None:
buf = device_momentum_buffer_list[i] = momentum_buffer_list[
indices[i]
] = torch.clone(device_grads[i]).detach()
else:
buf = cast(Tensor, device_momentum_buffer_list[i])
buf.mul_(momentum).add_(device_grads[i], alpha=1 - dampening)
bufs.append(buf)
if nesterov:
torch._foreach_add_(device_grads, bufs, alpha=momentum)
else:
device_grads = bufs
if not device_has_sparse_grad:
# handle internal item() call if lr is a tensor
if isinstance(lr, torch.Tensor) and torch.compiler.is_compiling():
grads_x_lr = torch._foreach_mul(device_grads, -lr)
torch._foreach_add_(device_params, grads_x_lr)
else:
torch._foreach_add_(device_params, device_grads, alpha=-lr)
else:
# foreach APIs don't support sparse
for i in range(len(device_params)):
device_params[i].add_(device_grads[i], alpha=-lr)
def _fused_sgd(
params: list[Tensor],
grads: list[Tensor],
momentum_buffer_list: list[Optional[Tensor]],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
weight_decay: float,
momentum: float,
lr: float,
dampening: float,
nesterov: bool,
maximize: bool,
has_sparse_grad: bool,
) -> None:
if not params:
return
if has_sparse_grad:
raise RuntimeError("`_fused_sgd` does not support sparse gradients")
grad_scale_dict: DeviceDict = (
{grad_scale.device: grad_scale} if grad_scale is not None else {}
)
found_inf_dict: DeviceDict = (
{found_inf.device: found_inf} if found_inf is not None else {}
)
no_momentum_buffer = momentum == 0
is_first_step = (
all(t is None for t in momentum_buffer_list) and not no_momentum_buffer
)
if is_first_step:
for i, g in enumerate(grads):
momentum_buffer_list[i] = torch.empty_like(g)
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
[params, grads, momentum_buffer_list], with_indices=False # type: ignore[list-item]
)
for (device, _), (
(device_params_, device_grads_, device_momentum_buffer_list),
_,
) in grouped_tensors.items():
device_params: list[Tensor] = cast(list[Tensor], device_params_)
device_grads: list[Tensor] = cast(list[Tensor], device_grads_)
device_grad_scale, device_found_inf = None, None
if grad_scale is not None:
device_grad_scale = grad_scale_dict.setdefault(
device, grad_scale.to(device)
)
if found_inf_dict is not None and found_inf is not None:
device_found_inf = found_inf_dict.setdefault(device, found_inf.to(device))
torch._fused_sgd_(
device_params,
device_grads,
[]
if no_momentum_buffer
else cast(list[Tensor], device_momentum_buffer_list),
weight_decay=weight_decay,
momentum=momentum,
lr=lr,
dampening=dampening,
nesterov=nesterov,
maximize=maximize,
is_first_step=is_first_step,
grad_scale=device_grad_scale,
found_inf=device_found_inf,
)
|