|
|
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_capturable_doc, |
|
_default_to_fused_or_foreach, |
|
_device_dtype_check_for_fused, |
|
_differentiable_doc, |
|
_disable_dynamo_if_unsupported, |
|
_foreach_doc, |
|
_fused_doc, |
|
_get_capturable_supported_devices, |
|
_get_scalar_dtype, |
|
_get_value, |
|
_maximize_doc, |
|
_params_doc, |
|
_stack_if_compiling, |
|
_use_grad_for_differentiable, |
|
_view_as_real, |
|
DeviceDict, |
|
DeviceDtypeDict, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["Adam", "adam"] |
|
|
|
|
|
class Adam(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 1e-3, |
|
betas: tuple[Union[float, Tensor], Union[float, Tensor]] = (0.9, 0.999), |
|
eps: float = 1e-8, |
|
weight_decay: float = 0, |
|
amsgrad: bool = False, |
|
*, |
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
capturable: bool = False, |
|
differentiable: bool = False, |
|
fused: Optional[bool] = None, |
|
decoupled_weight_decay: bool = False, |
|
): |
|
if isinstance(lr, Tensor): |
|
if foreach and not capturable: |
|
raise ValueError( |
|
"lr as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
if lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 <= eps: |
|
raise ValueError(f"Invalid epsilon value: {eps}") |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
if not ( |
|
(isinstance(betas[0], float) and isinstance(betas[1], float)) |
|
or (isinstance(betas[0], Tensor) and isinstance(betas[1], Tensor)) |
|
): |
|
raise ValueError("betas must be either both floats or both Tensors") |
|
if isinstance(betas[0], Tensor): |
|
if not capturable and foreach: |
|
raise ValueError( |
|
"betas[0] as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
if betas[0].numel() != 1: |
|
raise ValueError("Tensor betas[0] must be 1-element") |
|
if isinstance(betas[1], Tensor): |
|
if not capturable and foreach: |
|
raise ValueError( |
|
"betas[1] as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
if betas[1].numel() != 1: |
|
raise ValueError("Tensor betas[1] must be 1-element") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
amsgrad=amsgrad, |
|
maximize=maximize, |
|
foreach=foreach, |
|
capturable=capturable, |
|
differentiable=differentiable, |
|
fused=fused, |
|
decoupled_weight_decay=decoupled_weight_decay, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
if fused: |
|
if differentiable: |
|
raise RuntimeError("`fused` does not support `differentiable`") |
|
self._step_supports_amp_scaling = True |
|
|
|
|
|
|
|
|
|
if foreach: |
|
raise RuntimeError("`fused` and `foreach` cannot be `True` together.") |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("amsgrad", False) |
|
group.setdefault("maximize", False) |
|
group.setdefault("foreach", None) |
|
group.setdefault("capturable", False) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("decoupled_weight_decay", False) |
|
fused = group.setdefault("fused", None) |
|
for p in group["params"]: |
|
p_state = self.state.get(p, []) |
|
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): |
|
step_val = float(p_state["step"]) |
|
p_state["step"] = ( |
|
torch.tensor( |
|
step_val, |
|
dtype=_get_scalar_dtype(is_fused=fused), |
|
device=p.device, |
|
) |
|
if group["capturable"] or group["fused"] |
|
else torch.tensor(step_val, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
def _init_group( |
|
self, |
|
group, |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
max_exp_avg_sqs, |
|
state_steps, |
|
): |
|
has_complex = False |
|
for p in group["params"]: |
|
if p.grad is not None: |
|
has_complex |= torch.is_complex(p) |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError( |
|
"Adam does not support sparse gradients, please consider SparseAdam instead" |
|
) |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
if group["fused"]: |
|
_device_dtype_check_for_fused(p) |
|
|
|
|
|
|
|
state["step"] = ( |
|
torch.zeros( |
|
(), |
|
dtype=_get_scalar_dtype(is_fused=group["fused"]), |
|
device=p.device, |
|
) |
|
if group["capturable"] or group["fused"] |
|
else torch.tensor(0.0, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
state["exp_avg"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
if group["amsgrad"]: |
|
|
|
state["max_exp_avg_sq"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
exp_avgs.append(state["exp_avg"]) |
|
exp_avg_sqs.append(state["exp_avg_sq"]) |
|
|
|
if group["amsgrad"]: |
|
max_exp_avg_sqs.append(state["max_exp_avg_sq"]) |
|
if group["differentiable"] and state["step"].requires_grad: |
|
raise RuntimeError( |
|
"`requires_grad` is not supported for `step` in differentiable mode" |
|
) |
|
|
|
|
|
if ( |
|
group["foreach"] |
|
and torch.is_tensor(group["lr"]) |
|
and not group["capturable"] |
|
): |
|
raise RuntimeError( |
|
"lr as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
|
|
state_steps.append(state["step"]) |
|
return has_complex |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
exp_avgs: list[Tensor] = [] |
|
exp_avg_sqs: list[Tensor] = [] |
|
max_exp_avg_sqs: list[Tensor] = [] |
|
state_steps: list[Tensor] = [] |
|
beta1, beta2 = group["betas"] |
|
|
|
has_complex = self._init_group( |
|
group, |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
max_exp_avg_sqs, |
|
state_steps, |
|
) |
|
|
|
adam( |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
max_exp_avg_sqs, |
|
state_steps, |
|
amsgrad=group["amsgrad"], |
|
has_complex=has_complex, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=group["lr"], |
|
weight_decay=group["weight_decay"], |
|
eps=group["eps"], |
|
maximize=group["maximize"], |
|
foreach=group["foreach"], |
|
capturable=group["capturable"], |
|
differentiable=group["differentiable"], |
|
fused=group["fused"], |
|
grad_scale=getattr(self, "grad_scale", None), |
|
found_inf=getattr(self, "found_inf", None), |
|
decoupled_weight_decay=group["decoupled_weight_decay"], |
|
) |
|
|
|
return loss |
|
|
|
|
|
Adam.__doc__ = ( |
|
r"""Implements Adam algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 |
|
\text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)} \\ |
|
&\hspace{13mm} \lambda \text{ (weight decay)}, \: \textit{amsgrad}, |
|
\:\textit{maximize}, \: \epsilon \text{ (epsilon)} \\ |
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, |
|
v_0\leftarrow 0 \text{ (second moment)},\: v_0^{max}\leftarrow 0 \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
|
|
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ |
|
&\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}\textbf{else} \\ |
|
&\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ |
|
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ |
|
&\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ |
|
&\hspace{5mm}\textbf{if} \: amsgrad \\ |
|
&\hspace{10mm} v_t^{max} \leftarrow \mathrm{max}(v_{t-1}^{max},v_t) \\ |
|
&\hspace{10mm}\widehat{v_t} \leftarrow v_t^{max}/\big(1-\beta_2^t \big) \\ |
|
&\hspace{5mm}\textbf{else} \\ |
|
&\hspace{10mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ |
|
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ |
|
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. |
|
""" |
|
+ rf""" |
|
Args: |
|
{_params_doc} |
|
lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR |
|
is not yet supported for all our implementations. Please use a float |
|
LR if you are not also specifying fused=True or capturable=True. |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
decoupled_weight_decay (bool, optional): if True, this optimizer is |
|
equivalent to AdamW and the algorithm will not accumulate weight |
|
decay in the momentum nor variance. (default: False) |
|
amsgrad (bool, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) |
|
{_foreach_doc} |
|
{_maximize_doc} |
|
{_capturable_doc} |
|
{_differentiable_doc} |
|
{_fused_doc} |
|
.. Note:: |
|
A prototype implementation of Adam and AdamW for MPS supports `torch.float32` and `torch.float16`. |
|
.. _Adam\: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
|
|
""" |
|
) |
|
|
|
|
|
def _single_tensor_adam( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_avg_sqs: list[Tensor], |
|
max_exp_avg_sqs: list[Tensor], |
|
state_steps: list[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
amsgrad: bool, |
|
has_complex: bool, |
|
beta1: Union[float, Tensor], |
|
beta2: Union[float, Tensor], |
|
lr: Union[float, Tensor], |
|
weight_decay: float, |
|
eps: float, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
decoupled_weight_decay: bool, |
|
): |
|
assert grad_scale is None and found_inf is None |
|
|
|
if torch.jit.is_scripting(): |
|
|
|
|
|
|
|
assert isinstance(lr, float) |
|
assert isinstance(beta1, float) |
|
assert isinstance(beta2, float) |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(beta1, Tensor): |
|
beta1_dict: Optional[DeviceDtypeDict] = {(beta1.device, beta1.dtype): beta1} |
|
else: |
|
beta1_dict = None |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] if not maximize else -grads[i] |
|
exp_avg = exp_avgs[i] |
|
exp_avg_sq = exp_avg_sqs[i] |
|
step_t = state_steps[i] |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert ( |
|
param.device.type == step_t.device.type |
|
and param.device.type in capturable_supported_devices |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
|
|
step_t += 1 |
|
|
|
if weight_decay != 0: |
|
if decoupled_weight_decay: |
|
|
|
param.mul_(1 - lr * weight_decay) |
|
else: |
|
|
|
if differentiable and isinstance(weight_decay, Tensor): |
|
if weight_decay.requires_grad: |
|
grad = grad.addcmul_(param.clone(), weight_decay) |
|
else: |
|
grad = grad.add(param, alpha=weight_decay) |
|
else: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
if torch.is_complex(param): |
|
grad = torch.view_as_real(grad) |
|
exp_avg = torch.view_as_real(exp_avg) |
|
exp_avg_sq = torch.view_as_real(exp_avg_sq) |
|
if amsgrad: |
|
max_exp_avg_sqs[i] = torch.view_as_real(max_exp_avg_sqs[i]) |
|
param = torch.view_as_real(param) |
|
|
|
device = param.device |
|
|
|
if beta1_dict is not None: |
|
dtype = param.dtype |
|
|
|
|
|
key = (device, dtype) |
|
if key not in beta1_dict: |
|
beta1_dict[key] = beta1.to(device=device, dtype=dtype, non_blocking=True) |
|
|
|
device_beta1: Union[float, Tensor] = beta1_dict[key] |
|
else: |
|
device_beta1 = beta1 |
|
|
|
|
|
exp_avg.lerp_(grad, 1 - device_beta1) |
|
|
|
|
|
if differentiable and isinstance(beta2, Tensor): |
|
if beta2.requires_grad: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
exp_avg_sq.lerp_(torch.square(grad), weight=1 - beta2) |
|
else: |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
else: |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
if capturable or differentiable: |
|
step = step_t |
|
|
|
|
|
if differentiable and isinstance(beta1, Tensor): |
|
if beta1.requires_grad: |
|
bias_correction1 = 1 - beta1 ** step.clone() |
|
else: |
|
bias_correction1 = 1 - beta1**step |
|
else: |
|
bias_correction1 = 1 - beta1**step |
|
|
|
|
|
if differentiable and isinstance(beta2, Tensor): |
|
if beta2.requires_grad: |
|
bias_correction2 = 1 - beta2 ** step.clone() |
|
else: |
|
bias_correction2 = 1 - beta2**step |
|
else: |
|
bias_correction2 = 1 - beta2**step |
|
|
|
step_size = lr / bias_correction1 |
|
step_size_neg = step_size.neg() |
|
|
|
bias_correction2_sqrt = bias_correction2.sqrt() |
|
|
|
if amsgrad: |
|
|
|
if differentiable: |
|
max_exp_avg_sq = max_exp_avg_sqs[i].clone() |
|
else: |
|
max_exp_avg_sq = max_exp_avg_sqs[i] |
|
|
|
max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sq, exp_avg_sq)) |
|
|
|
|
|
|
|
|
|
denom = ( |
|
max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg) |
|
).add_(eps / step_size_neg) |
|
else: |
|
denom = ( |
|
exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg) |
|
).add_(eps / step_size_neg) |
|
|
|
if differentiable: |
|
param.addcdiv_(exp_avg.clone(), denom) |
|
else: |
|
param.addcdiv_(exp_avg, denom) |
|
else: |
|
step = _get_value(step_t) |
|
|
|
bias_correction1 = 1 - beta1**step |
|
bias_correction2 = 1 - beta2**step |
|
|
|
step_size = lr / bias_correction1 |
|
|
|
bias_correction2_sqrt = bias_correction2**0.5 |
|
|
|
if amsgrad: |
|
|
|
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i]) |
|
|
|
|
|
denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps) |
|
else: |
|
denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) |
|
|
|
param.addcdiv_(exp_avg, denom, value=-step_size) |
|
|
|
|
|
if amsgrad and torch.is_complex(params[i]): |
|
max_exp_avg_sqs[i] = torch.view_as_complex(max_exp_avg_sqs[i]) |
|
|
|
|
|
def _multi_tensor_adam( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_avg_sqs: list[Tensor], |
|
max_exp_avg_sqs: list[Tensor], |
|
state_steps: list[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
amsgrad: bool, |
|
has_complex: bool, |
|
beta1: Union[float, Tensor], |
|
beta2: Union[float, Tensor], |
|
lr: Union[float, Tensor], |
|
weight_decay: float, |
|
eps: float, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
decoupled_weight_decay: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
if isinstance(lr, Tensor) and not capturable: |
|
raise RuntimeError( |
|
"lr as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
|
|
if isinstance(beta1, Tensor): |
|
if not capturable: |
|
raise ValueError( |
|
"beta1 as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
if beta1.numel() != 1: |
|
raise ValueError("Tensor beta1 must be 1-element") |
|
|
|
if isinstance(beta2, Tensor): |
|
if not capturable: |
|
raise ValueError( |
|
"beta2 as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
if beta2.numel() != 1: |
|
raise ValueError("Tensor beta2 must be 1-element") |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices( |
|
supports_xla=False |
|
) |
|
assert all( |
|
p.device.type == step.device.type |
|
and p.device.type in capturable_supported_devices |
|
for p, step in zip(params, state_steps) |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
assert grad_scale is None and found_inf is None |
|
|
|
assert not differentiable, "_foreach ops don't support autograd" |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps] |
|
) |
|
|
|
|
|
|
|
beta1_dict: Optional[DeviceDict] = ( |
|
{beta1.device: beta1} |
|
if isinstance(beta1, Tensor) and str(beta1.device) != "cpu" |
|
else None |
|
) |
|
|
|
for ( |
|
device_params_, |
|
device_grads_, |
|
device_exp_avgs_, |
|
device_exp_avg_sqs_, |
|
device_max_exp_avg_sqs_, |
|
device_state_steps_, |
|
), _ in grouped_tensors.values(): |
|
device_params = cast(list[Tensor], device_params_) |
|
device_grads = cast(list[Tensor], device_grads_) |
|
device_exp_avgs = cast(list[Tensor], device_exp_avgs_) |
|
device_exp_avg_sqs = cast(list[Tensor], device_exp_avg_sqs_) |
|
device_state_steps = cast(list[Tensor], device_state_steps_) |
|
|
|
device = device_params[0].device |
|
if beta1_dict is not None and device not in beta1_dict: |
|
beta1_dict[device] = beta1.to(device=device, non_blocking=True) |
|
|
|
device_beta1 = beta1_dict[device] if beta1_dict else beta1 |
|
|
|
|
|
if has_complex: |
|
if amsgrad: |
|
device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_) |
|
_view_as_real( |
|
device_params, |
|
device_grads, |
|
device_exp_avgs, |
|
device_exp_avg_sqs, |
|
device_max_exp_avg_sqs, |
|
) |
|
else: |
|
_view_as_real( |
|
device_params, device_grads, device_exp_avgs, device_exp_avg_sqs |
|
) |
|
|
|
if maximize: |
|
device_grads = torch._foreach_neg(device_grads) |
|
|
|
|
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and device_state_steps[0].is_cpu: |
|
torch._foreach_add_( |
|
device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
|
) |
|
else: |
|
torch._foreach_add_(device_state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
if decoupled_weight_decay: |
|
|
|
torch._foreach_mul_(device_params, 1 - lr * weight_decay) |
|
else: |
|
|
|
if maximize: |
|
torch._foreach_add_(device_grads, device_params, alpha=weight_decay) |
|
else: |
|
device_grads = torch._foreach_add( |
|
device_grads, device_params, alpha=weight_decay |
|
) |
|
|
|
|
|
|
|
|
|
torch._foreach_lerp_(device_exp_avgs, device_grads, 1 - device_beta1) |
|
|
|
torch._foreach_mul_(device_exp_avg_sqs, beta2) |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(beta2, torch.Tensor): |
|
scaled_device_grads = torch._foreach_mul(device_grads, 1 - beta2) |
|
value = 1.0 |
|
else: |
|
scaled_device_grads = device_grads |
|
value = 1 - beta2 |
|
|
|
torch._foreach_addcmul_( |
|
device_exp_avg_sqs, scaled_device_grads, device_grads, value |
|
) |
|
|
|
|
|
del device_grads |
|
del scaled_device_grads |
|
|
|
bias_correction1: Union[tuple[Tensor, ...], list[Tensor]] |
|
bias_correction2: Union[tuple[Tensor, ...], list[Tensor]] |
|
bias_correction2_sqrt: Union[tuple[Tensor, ...], list[Tensor]] |
|
|
|
if capturable: |
|
bias_correction1 = torch._foreach_pow(beta1, device_state_steps) |
|
bias_correction2 = torch._foreach_pow(beta2, device_state_steps) |
|
|
|
torch._foreach_sub_(bias_correction1, 1) |
|
torch._foreach_sub_(bias_correction2, 1) |
|
|
|
torch._foreach_neg_(bias_correction2) |
|
|
|
|
|
torch._foreach_div_(bias_correction1, lr) |
|
torch._foreach_reciprocal_(bias_correction1) |
|
|
|
torch._foreach_sqrt_(bias_correction2) |
|
|
|
|
|
|
|
|
|
step_size = bias_correction1 |
|
bias_correction2_sqrt = bias_correction2 |
|
|
|
if amsgrad: |
|
device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_) |
|
|
|
torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs) |
|
|
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs) |
|
else: |
|
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) |
|
|
|
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) |
|
torch._foreach_add_(exp_avg_sq_sqrt, eps) |
|
torch._foreach_div_(exp_avg_sq_sqrt, step_size) |
|
|
|
|
|
torch._foreach_addcdiv_(device_params, device_exp_avgs, exp_avg_sq_sqrt) |
|
else: |
|
bias_correction1 = [ |
|
1 - beta1 ** _get_value(step) for step in device_state_steps |
|
] |
|
bias_correction2 = [ |
|
1 - beta2 ** _get_value(step) for step in device_state_steps |
|
] |
|
|
|
step_size = _stack_if_compiling([(lr / bc) * -1 for bc in bias_correction1]) |
|
|
|
bias_correction2_sqrt = [bc**0.5 for bc in bias_correction2] |
|
|
|
if amsgrad: |
|
device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_) |
|
|
|
torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs) |
|
|
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs) |
|
else: |
|
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) |
|
|
|
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) |
|
torch._foreach_add_(exp_avg_sq_sqrt, eps) |
|
torch._foreach_addcdiv_( |
|
device_params, device_exp_avgs, exp_avg_sq_sqrt, step_size |
|
) |
|
|
|
|
|
def _fused_adam( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_avg_sqs: list[Tensor], |
|
max_exp_avg_sqs: list[Tensor], |
|
state_steps: list[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
amsgrad: bool, |
|
has_complex: bool, |
|
beta1: float, |
|
beta2: float, |
|
lr: Union[float, Tensor], |
|
weight_decay: float, |
|
eps: float, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
decoupled_weight_decay: bool, |
|
) -> None: |
|
if not params: |
|
return |
|
if differentiable: |
|
raise RuntimeError("Adam with fused=True does not support differentiable=True") |
|
|
|
grad_scale_dict: DeviceDict = ( |
|
{grad_scale.device: grad_scale} if grad_scale is not None else {} |
|
) |
|
found_inf_dict: DeviceDict = ( |
|
{found_inf.device: found_inf} if found_inf is not None else {} |
|
) |
|
|
|
|
|
|
|
lr_dict: Optional[DeviceDict] = ( |
|
{lr.device: lr} if isinstance(lr, Tensor) and str(lr.device) != "cpu" else None |
|
) |
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps] |
|
) |
|
for (device, _), ( |
|
( |
|
device_params_, |
|
device_grads_, |
|
device_exp_avgs_, |
|
device_exp_avg_sqs_, |
|
device_max_exp_avg_sqs, |
|
device_state_steps_, |
|
), |
|
_, |
|
) in grouped_tensors.items(): |
|
device_params = cast(list[Tensor], device_params_) |
|
device_grads = cast(list[Tensor], device_grads_) |
|
device_exp_avgs = cast(list[Tensor], device_exp_avgs_) |
|
device_exp_avg_sqs = cast(list[Tensor], device_exp_avg_sqs_) |
|
device_state_steps = cast(list[Tensor], device_state_steps_) |
|
|
|
if device.type == "mps": |
|
assert found_inf is None and grad_scale is None |
|
|
|
device_grad_scale, device_found_inf = None, None |
|
if grad_scale is not None: |
|
device_grad_scale = grad_scale_dict.setdefault( |
|
device, grad_scale.to(device, non_blocking=True) |
|
) |
|
if found_inf is not None: |
|
device_found_inf = found_inf_dict.setdefault( |
|
device, found_inf.to(device, non_blocking=True) |
|
) |
|
if lr_dict is not None and device not in lr_dict: |
|
lr_dict[device] = lr.to(device=device, non_blocking=True) |
|
lr = lr_dict[device] |
|
torch._foreach_add_(device_state_steps, 1) |
|
func = torch._fused_adam_ if not decoupled_weight_decay else torch._fused_adamw_ |
|
func( |
|
device_params, |
|
device_grads, |
|
device_exp_avgs, |
|
device_exp_avg_sqs, |
|
device_max_exp_avg_sqs, |
|
device_state_steps, |
|
amsgrad=amsgrad, |
|
lr=lr, |
|
beta1=beta1, |
|
beta2=beta2, |
|
weight_decay=weight_decay, |
|
eps=eps, |
|
maximize=maximize, |
|
grad_scale=device_grad_scale, |
|
found_inf=device_found_inf, |
|
) |
|
if device_found_inf is not None: |
|
torch._foreach_sub_( |
|
device_state_steps, [device_found_inf] * len(device_state_steps) |
|
) |
|
|
|
|
|
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adam) |
|
def adam( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_avg_sqs: list[Tensor], |
|
max_exp_avg_sqs: list[Tensor], |
|
state_steps: list[Tensor], |
|
|
|
|
|
foreach: Optional[bool] = None, |
|
capturable: bool = False, |
|
differentiable: bool = False, |
|
fused: Optional[bool] = None, |
|
grad_scale: Optional[Tensor] = None, |
|
found_inf: Optional[Tensor] = None, |
|
has_complex: bool = False, |
|
decoupled_weight_decay: bool = False, |
|
*, |
|
amsgrad: bool, |
|
beta1: float, |
|
beta2: float, |
|
lr: Union[float, Tensor], |
|
weight_decay: float, |
|
eps: float, |
|
maximize: bool, |
|
): |
|
r"""Functional API that performs Adam algorithm computation. |
|
|
|
See :class:`~torch.optim.Adam` for details. |
|
""" |
|
|
|
|
|
|
|
|
|
if fused is None and foreach is None: |
|
_, foreach = _default_to_fused_or_foreach( |
|
params, differentiable, use_fused=False |
|
) |
|
|
|
if foreach and isinstance(lr, Tensor) and not capturable: |
|
foreach = False |
|
if fused is None: |
|
fused = False |
|
if foreach is None: |
|
foreach = False |
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and not all( |
|
isinstance(t, torch.Tensor) for t in state_steps |
|
): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
if fused and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with fused optimizers") |
|
|
|
if fused and not torch.jit.is_scripting(): |
|
func = _fused_adam |
|
elif foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_adam |
|
else: |
|
func = _single_tensor_adam |
|
|
|
func( |
|
params, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
max_exp_avg_sqs, |
|
state_steps, |
|
amsgrad=amsgrad, |
|
has_complex=has_complex, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
eps=eps, |
|
maximize=maximize, |
|
capturable=capturable, |
|
differentiable=differentiable, |
|
grad_scale=grad_scale, |
|
found_inf=found_inf, |
|
decoupled_weight_decay=decoupled_weight_decay, |
|
) |
|
|