File size: 38,922 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
# mypy: allow-untyped-defs
from typing import cast, Optional, Union

import torch
from torch import Tensor

from .optimizer import (
    _capturable_doc,
    _default_to_fused_or_foreach,
    _device_dtype_check_for_fused,
    _differentiable_doc,
    _disable_dynamo_if_unsupported,
    _foreach_doc,
    _fused_doc,
    _get_capturable_supported_devices,
    _get_scalar_dtype,
    _get_value,
    _maximize_doc,
    _params_doc,
    _stack_if_compiling,
    _use_grad_for_differentiable,
    _view_as_real,
    DeviceDict,
    DeviceDtypeDict,
    Optimizer,
    ParamsT,
)


__all__ = ["Adam", "adam"]


class Adam(Optimizer):
    def __init__(
        self,
        params: ParamsT,
        lr: Union[float, Tensor] = 1e-3,
        betas: tuple[Union[float, Tensor], Union[float, Tensor]] = (0.9, 0.999),
        eps: float = 1e-8,
        weight_decay: float = 0,
        amsgrad: bool = False,
        *,
        foreach: Optional[bool] = None,
        maximize: bool = False,
        capturable: bool = False,
        differentiable: bool = False,
        fused: Optional[bool] = None,
        decoupled_weight_decay: bool = False,
    ):
        if isinstance(lr, Tensor):
            if foreach and not capturable:
                raise ValueError(
                    "lr as a Tensor is not supported for capturable=False and foreach=True"
                )
            if lr.numel() != 1:
                raise ValueError("Tensor lr must be 1-element")
        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps}")
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")
        if not (
            (isinstance(betas[0], float) and isinstance(betas[1], float))
            or (isinstance(betas[0], Tensor) and isinstance(betas[1], Tensor))
        ):
            raise ValueError("betas must be either both floats or both Tensors")
        if isinstance(betas[0], Tensor):
            if not capturable and foreach:
                raise ValueError(
                    "betas[0] as a Tensor is not supported for capturable=False and foreach=True"
                )
            if betas[0].numel() != 1:
                raise ValueError("Tensor betas[0] must be 1-element")
        if isinstance(betas[1], Tensor):
            if not capturable and foreach:
                raise ValueError(
                    "betas[1] as a Tensor is not supported for capturable=False and foreach=True"
                )
            if betas[1].numel() != 1:
                raise ValueError("Tensor betas[1] must be 1-element")

        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            amsgrad=amsgrad,
            maximize=maximize,
            foreach=foreach,
            capturable=capturable,
            differentiable=differentiable,
            fused=fused,
            decoupled_weight_decay=decoupled_weight_decay,
        )
        super().__init__(params, defaults)

        if fused:
            if differentiable:
                raise RuntimeError("`fused` does not support `differentiable`")
            self._step_supports_amp_scaling = True
            # TODO(crcrpar): [low prec params & their higher prec copy]
            # Support AMP with FP16/BF16 model params which would need
            # higher prec copy of params to do update math in higher prec to
            # alleviate the loss of information.
            if foreach:
                raise RuntimeError("`fused` and `foreach` cannot be `True` together.")

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault("amsgrad", False)
            group.setdefault("maximize", False)
            group.setdefault("foreach", None)
            group.setdefault("capturable", False)
            group.setdefault("differentiable", False)
            group.setdefault("decoupled_weight_decay", False)
            fused = group.setdefault("fused", None)
            for p in group["params"]:
                p_state = self.state.get(p, [])
                if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
                    step_val = float(p_state["step"])
                    p_state["step"] = (
                        torch.tensor(
                            step_val,
                            dtype=_get_scalar_dtype(is_fused=fused),
                            device=p.device,
                        )
                        if group["capturable"] or group["fused"]
                        else torch.tensor(step_val, dtype=_get_scalar_dtype())
                    )

    def _init_group(
        self,
        group,
        params_with_grad,
        grads,
        exp_avgs,
        exp_avg_sqs,
        max_exp_avg_sqs,
        state_steps,
    ):
        has_complex = False
        for p in group["params"]:
            if p.grad is not None:
                has_complex |= torch.is_complex(p)
                params_with_grad.append(p)
                if p.grad.is_sparse:
                    raise RuntimeError(
                        "Adam does not support sparse gradients, please consider SparseAdam instead"
                    )
                grads.append(p.grad)

                state = self.state[p]
                # Lazy state initialization
                if len(state) == 0:
                    if group["fused"]:
                        _device_dtype_check_for_fused(p)
                    # note(crcrpar): [special device hosting for step]
                    # Deliberately host `step` on CPU if both capturable and fused are off.
                    # This is because kernel launches are costly on CUDA and XLA.
                    state["step"] = (
                        torch.zeros(
                            (),
                            dtype=_get_scalar_dtype(is_fused=group["fused"]),
                            device=p.device,
                        )
                        if group["capturable"] or group["fused"]
                        else torch.tensor(0.0, dtype=_get_scalar_dtype())
                    )
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(
                        p, memory_format=torch.preserve_format
                    )
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(
                        p, memory_format=torch.preserve_format
                    )
                    if group["amsgrad"]:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state["max_exp_avg_sq"] = torch.zeros_like(
                            p, memory_format=torch.preserve_format
                        )

                exp_avgs.append(state["exp_avg"])
                exp_avg_sqs.append(state["exp_avg_sq"])

                if group["amsgrad"]:
                    max_exp_avg_sqs.append(state["max_exp_avg_sq"])
                if group["differentiable"] and state["step"].requires_grad:
                    raise RuntimeError(
                        "`requires_grad` is not supported for `step` in differentiable mode"
                    )

                # Foreach without capturable does not support a tensor lr
                if (
                    group["foreach"]
                    and torch.is_tensor(group["lr"])
                    and not group["capturable"]
                ):
                    raise RuntimeError(
                        "lr as a Tensor is not supported for capturable=False and foreach=True"
                    )

                state_steps.append(state["step"])
        return has_complex

    @_use_grad_for_differentiable
    def step(self, closure=None):
        """Perform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        self._cuda_graph_capture_health_check()

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad: list[Tensor] = []
            grads: list[Tensor] = []
            exp_avgs: list[Tensor] = []
            exp_avg_sqs: list[Tensor] = []
            max_exp_avg_sqs: list[Tensor] = []
            state_steps: list[Tensor] = []
            beta1, beta2 = group["betas"]

            has_complex = self._init_group(
                group,
                params_with_grad,
                grads,
                exp_avgs,
                exp_avg_sqs,
                max_exp_avg_sqs,
                state_steps,
            )

            adam(
                params_with_grad,
                grads,
                exp_avgs,
                exp_avg_sqs,
                max_exp_avg_sqs,
                state_steps,
                amsgrad=group["amsgrad"],
                has_complex=has_complex,
                beta1=beta1,
                beta2=beta2,
                lr=group["lr"],
                weight_decay=group["weight_decay"],
                eps=group["eps"],
                maximize=group["maximize"],
                foreach=group["foreach"],
                capturable=group["capturable"],
                differentiable=group["differentiable"],
                fused=group["fused"],
                grad_scale=getattr(self, "grad_scale", None),
                found_inf=getattr(self, "found_inf", None),
                decoupled_weight_decay=group["decoupled_weight_decay"],
            )

        return loss


Adam.__doc__ = (
    r"""Implements Adam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}          \\
            &\hspace{13mm}      \lambda \text{ (weight decay)},  \: \textit{amsgrad},
                \:\textit{maximize},  \: \epsilon \text{ (epsilon)}                              \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0\leftarrow 0 \text{ (second moment)},\: v_0^{max}\leftarrow 0          \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\textbf{if} \: \lambda \neq 0                                           \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{5mm}\textbf{if} \: amsgrad                                                  \\
            &\hspace{10mm} v_t^{max} \leftarrow \mathrm{max}(v_{t-1}^{max},v_t)                  \\
            &\hspace{10mm}\widehat{v_t} \leftarrow v_t^{max}/\big(1-\beta_2^t \big)              \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                  \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    """
    + rf"""
    Args:
        {_params_doc}
        lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR
            is not yet supported for all our implementations. Please use a float
            LR if you are not also specifying fused=True or capturable=True.
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): if True, this optimizer is
            equivalent to AdamW and the algorithm will not accumulate weight
            decay in the momentum nor variance. (default: False)
        amsgrad (bool, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
        {_foreach_doc}
        {_maximize_doc}
        {_capturable_doc}
        {_differentiable_doc}
        {_fused_doc}
    .. Note::
        A prototype implementation of Adam and AdamW for MPS supports `torch.float32` and `torch.float16`.
    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ

    """
)


def _single_tensor_adam(
    params: list[Tensor],
    grads: list[Tensor],
    exp_avgs: list[Tensor],
    exp_avg_sqs: list[Tensor],
    max_exp_avg_sqs: list[Tensor],
    state_steps: list[Tensor],
    grad_scale: Optional[Tensor],
    found_inf: Optional[Tensor],
    *,
    amsgrad: bool,
    has_complex: bool,
    beta1: Union[float, Tensor],
    beta2: Union[float, Tensor],
    lr: Union[float, Tensor],
    weight_decay: float,
    eps: float,
    maximize: bool,
    capturable: bool,
    differentiable: bool,
    decoupled_weight_decay: bool,
):
    assert grad_scale is None and found_inf is None

    if torch.jit.is_scripting():
        # this assert is due to JIT being dumb and not realizing that the ops below
        # have overloads to handle both float and Tensor lrs, so we just assert it's
        # a float since most people using JIT are using floats
        assert isinstance(lr, float)
        assert isinstance(beta1, float)
        assert isinstance(beta2, float)

    # We only shuffle around the beta when it is a Tensor, otherwise, we prefer
    # treating it as a scalar.
    # Note: ensure type declaration is under conditional check for isinstance
    # or else torchscript will get cranky about the DeviceDict type.
    if isinstance(beta1, Tensor):
        beta1_dict: Optional[DeviceDtypeDict] = {(beta1.device, beta1.dtype): beta1}
    else:
        beta1_dict = None

    for i, param in enumerate(params):
        grad = grads[i] if not maximize else -grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        step_t = state_steps[i]

        # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
        if not torch.compiler.is_compiling() and capturable:
            capturable_supported_devices = _get_capturable_supported_devices()
            assert (
                param.device.type == step_t.device.type
                and param.device.type in capturable_supported_devices
            ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

        # update step
        step_t += 1

        if weight_decay != 0:
            if decoupled_weight_decay:
                # Perform stepweight decay
                param.mul_(1 - lr * weight_decay)
            else:
                # Nested if is necessary to bypass jitscript rules
                if differentiable and isinstance(weight_decay, Tensor):
                    if weight_decay.requires_grad:
                        grad = grad.addcmul_(param.clone(), weight_decay)
                    else:
                        grad = grad.add(param, alpha=weight_decay)
                else:
                    grad = grad.add(param, alpha=weight_decay)

        if torch.is_complex(param):
            grad = torch.view_as_real(grad)
            exp_avg = torch.view_as_real(exp_avg)
            exp_avg_sq = torch.view_as_real(exp_avg_sq)
            if amsgrad:
                max_exp_avg_sqs[i] = torch.view_as_real(max_exp_avg_sqs[i])
            param = torch.view_as_real(param)

        device = param.device

        if beta1_dict is not None:
            dtype = param.dtype  # type: ignore[union-attr]

            # cast to workaround https://github.com/pytorch/pytorch/issues/140601
            key = (device, dtype)
            if key not in beta1_dict:
                beta1_dict[key] = beta1.to(device=device, dtype=dtype, non_blocking=True)  # type: ignore[union-attr]

            device_beta1: Union[float, Tensor] = beta1_dict[key]
        else:
            device_beta1 = beta1

        # Decay the first and second moment running average coefficient
        exp_avg.lerp_(grad, 1 - device_beta1)

        # Nested if is necessary to bypass jitscript rules
        if differentiable and isinstance(beta2, Tensor):
            if beta2.requires_grad:
                # Using lerp to only use 2 operations bc addcmul's value cannot be a tensor
                # Showing equivalence of differentiable path and nondifferentiable path
                # expavg * b2 + grad^2 * (1-b2)
                #           add expavg * (1-b2) - expavg * (1-b2) = 0
                # expavg * b2 + expavg * (1-b2) - expavg * (1-b2) + grad^2 * (1-b2)
                # expavg - expavg * (1-b2) + grad^2 * (1-b2)
                # expavg + (grad^2 - expavg) * (1-b2)
                # expavg.lerp(grad^2, 1-beta2)
                exp_avg_sq.lerp_(torch.square(grad), weight=1 - beta2)
            else:
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
        else:
            exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

        if capturable or differentiable:
            step = step_t

            # Nested if is necessary to bypass jitscript rules
            if differentiable and isinstance(beta1, Tensor):
                if beta1.requires_grad:
                    bias_correction1 = 1 - beta1 ** step.clone()
                else:
                    bias_correction1 = 1 - beta1**step
            else:
                bias_correction1 = 1 - beta1**step

            # Nested if is necessary to bypass jitscript rules
            if differentiable and isinstance(beta2, Tensor):
                if beta2.requires_grad:
                    bias_correction2 = 1 - beta2 ** step.clone()
                else:
                    bias_correction2 = 1 - beta2**step
            else:
                bias_correction2 = 1 - beta2**step

            step_size = lr / bias_correction1
            step_size_neg = step_size.neg()

            bias_correction2_sqrt = bias_correction2.sqrt()

            if amsgrad:
                # Maintains the maximum of all 2nd moment running avg. till now
                if differentiable:
                    max_exp_avg_sq = max_exp_avg_sqs[i].clone()
                else:
                    max_exp_avg_sq = max_exp_avg_sqs[i]

                max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sq, exp_avg_sq))

                # Uses the max. for normalizing running avg. of gradient
                # Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
                # (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
                denom = (
                    max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg)
                ).add_(eps / step_size_neg)
            else:
                denom = (
                    exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)
                ).add_(eps / step_size_neg)

            if differentiable:
                param.addcdiv_(exp_avg.clone(), denom)
            else:
                param.addcdiv_(exp_avg, denom)
        else:
            step = _get_value(step_t)

            bias_correction1 = 1 - beta1**step
            bias_correction2 = 1 - beta2**step

            step_size = lr / bias_correction1

            bias_correction2_sqrt = bias_correction2**0.5

            if amsgrad:
                # Maintains the maximum of all 2nd moment running avg. till now
                torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])

                # Use the max. for normalizing running avg. of gradient
                denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps)
            else:
                denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps)

            param.addcdiv_(exp_avg, denom, value=-step_size)

        # Lastly, switch back to complex view
        if amsgrad and torch.is_complex(params[i]):
            max_exp_avg_sqs[i] = torch.view_as_complex(max_exp_avg_sqs[i])


def _multi_tensor_adam(
    params: list[Tensor],
    grads: list[Tensor],
    exp_avgs: list[Tensor],
    exp_avg_sqs: list[Tensor],
    max_exp_avg_sqs: list[Tensor],
    state_steps: list[Tensor],
    grad_scale: Optional[Tensor],
    found_inf: Optional[Tensor],
    *,
    amsgrad: bool,
    has_complex: bool,
    beta1: Union[float, Tensor],
    beta2: Union[float, Tensor],
    lr: Union[float, Tensor],
    weight_decay: float,
    eps: float,
    maximize: bool,
    capturable: bool,
    differentiable: bool,
    decoupled_weight_decay: bool,
):
    if len(params) == 0:
        return

    if isinstance(lr, Tensor) and not capturable:
        raise RuntimeError(
            "lr as a Tensor is not supported for capturable=False and foreach=True"
        )

    if isinstance(beta1, Tensor):
        if not capturable:
            raise ValueError(
                "beta1 as a Tensor is not supported for capturable=False and foreach=True"
            )
        if beta1.numel() != 1:
            raise ValueError("Tensor beta1 must be 1-element")

    if isinstance(beta2, Tensor):
        if not capturable:
            raise ValueError(
                "beta2 as a Tensor is not supported for capturable=False and foreach=True"
            )
        if beta2.numel() != 1:
            raise ValueError("Tensor beta2 must be 1-element")

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if not torch.compiler.is_compiling() and capturable:
        capturable_supported_devices = _get_capturable_supported_devices(
            supports_xla=False
        )
        assert all(
            p.device.type == step.device.type
            and p.device.type in capturable_supported_devices
            for p, step in zip(params, state_steps)
        ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

    assert grad_scale is None and found_inf is None

    assert not differentiable, "_foreach ops don't support autograd"

    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
        [params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]  # type: ignore[list-item]
    )

    # We only shuffle around the beta when it is a Tensor and on CUDA, otherwise, we prefer
    # treating it as a scalar.
    beta1_dict: Optional[DeviceDict] = (  # type: ignore[attr-defined]
        {beta1.device: beta1}
        if isinstance(beta1, Tensor) and str(beta1.device) != "cpu"
        else None
    )

    for (
        device_params_,
        device_grads_,
        device_exp_avgs_,
        device_exp_avg_sqs_,
        device_max_exp_avg_sqs_,
        device_state_steps_,
    ), _ in grouped_tensors.values():
        device_params = cast(list[Tensor], device_params_)
        device_grads = cast(list[Tensor], device_grads_)
        device_exp_avgs = cast(list[Tensor], device_exp_avgs_)
        device_exp_avg_sqs = cast(list[Tensor], device_exp_avg_sqs_)
        device_state_steps = cast(list[Tensor], device_state_steps_)

        device = device_params[0].device
        if beta1_dict is not None and device not in beta1_dict:
            beta1_dict[device] = beta1.to(device=device, non_blocking=True)  # type: ignore[union-attr, attr-defined]

        device_beta1 = beta1_dict[device] if beta1_dict else beta1

        # Handle complex parameters
        if has_complex:
            if amsgrad:
                device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_)
                _view_as_real(
                    device_params,
                    device_grads,
                    device_exp_avgs,
                    device_exp_avg_sqs,
                    device_max_exp_avg_sqs,
                )
            else:
                _view_as_real(
                    device_params, device_grads, device_exp_avgs, device_exp_avg_sqs
                )

        if maximize:
            device_grads = torch._foreach_neg(device_grads)  # type: ignore[assignment]

        # Update steps
        # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
        # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
        # wrapped it once now. The alpha is required to assure we go to the right overload.
        if not torch.compiler.is_compiling() and device_state_steps[0].is_cpu:
            torch._foreach_add_(
                device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
            )
        else:
            torch._foreach_add_(device_state_steps, 1)

        if weight_decay != 0:
            if decoupled_weight_decay:
                # Perform stepweight decay
                torch._foreach_mul_(device_params, 1 - lr * weight_decay)
            else:
                # Re-use the intermediate memory (device_grads) already allocated for maximize
                if maximize:
                    torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
                else:
                    device_grads = torch._foreach_add(  # type: ignore[assignment]
                        device_grads, device_params, alpha=weight_decay
                    )

        # Decay the first and second moment running average coefficient
        # Use device beta1 if beta1 is a tensor to ensure all
        # tensors are on the same device
        torch._foreach_lerp_(device_exp_avgs, device_grads, 1 - device_beta1)

        torch._foreach_mul_(device_exp_avg_sqs, beta2)

        # Due to the strictness of the _foreach_addcmul API, we can't have a single
        # tensor scalar as the scalar arg (only python number is supported there)
        # as a result, separate out the value mul
        # Filed https://github.com/pytorch/pytorch/issues/139795
        if isinstance(beta2, torch.Tensor):
            scaled_device_grads = torch._foreach_mul(device_grads, 1 - beta2)  # type: ignore[assignment]
            value = 1.0
        else:
            scaled_device_grads = device_grads  # type: ignore[assignment]
            value = 1 - beta2

        torch._foreach_addcmul_(
            device_exp_avg_sqs, scaled_device_grads, device_grads, value
        )

        # Delete the local intermediate(s) since they won't be used anymore to save on peak memory
        del device_grads
        del scaled_device_grads

        bias_correction1: Union[tuple[Tensor, ...], list[Tensor]]
        bias_correction2: Union[tuple[Tensor, ...], list[Tensor]]
        bias_correction2_sqrt: Union[tuple[Tensor, ...], list[Tensor]]

        if capturable:
            bias_correction1 = torch._foreach_pow(beta1, device_state_steps)  # type: ignore[arg-type]
            bias_correction2 = torch._foreach_pow(beta2, device_state_steps)  # type: ignore[arg-type]
            # foreach_sub doesn't allow a scalar as the first arg
            torch._foreach_sub_(bias_correction1, 1)
            torch._foreach_sub_(bias_correction2, 1)
            # we do not negate bias_correction1 as it'll need to be negated later anyway
            torch._foreach_neg_(bias_correction2)

            # foreach_div doesn't allow a scalar as the first arg
            torch._foreach_div_(bias_correction1, lr)
            torch._foreach_reciprocal_(bias_correction1)

            torch._foreach_sqrt_(bias_correction2)

            # Re-assign for clarity as we maintain minimal intermediates: we'll have
            # step_size = - lr / (1 - beta1 ^ t) where t = num_steps
            # bias_correction2_sqrt = sqrt(1 - beta2 ^ t)
            step_size = bias_correction1
            bias_correction2_sqrt = bias_correction2

            if amsgrad:
                device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_)
                # Maintains the maximum of all 2nd moment running avg. till now
                torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs)  # type: ignore[assignment]

                # Set intermediate to the max. for normalizing running avg. of gradient when amsgrad
                exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs)
            else:
                exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)

            torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
            torch._foreach_add_(exp_avg_sq_sqrt, eps)
            torch._foreach_div_(exp_avg_sq_sqrt, step_size)

            # at this point, exp_avg_sq_sqrt = - (1 - beta^t) * [sqrt(exp_avg_sq / (1 - beta2^t)) + eps] / lr
            torch._foreach_addcdiv_(device_params, device_exp_avgs, exp_avg_sq_sqrt)
        else:
            bias_correction1 = [
                1 - beta1 ** _get_value(step) for step in device_state_steps
            ]
            bias_correction2 = [
                1 - beta2 ** _get_value(step) for step in device_state_steps
            ]

            step_size = _stack_if_compiling([(lr / bc) * -1 for bc in bias_correction1])

            bias_correction2_sqrt = [bc**0.5 for bc in bias_correction2]  # type: ignore[arg-type]

            if amsgrad:
                device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_)
                # Maintains the maximum of all 2nd moment running avg. till now
                torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs)

                # Use the max. for normalizing running avg. of gradient
                exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs)
            else:
                exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)

            torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
            torch._foreach_add_(exp_avg_sq_sqrt, eps)
            torch._foreach_addcdiv_(
                device_params, device_exp_avgs, exp_avg_sq_sqrt, step_size  # type: ignore[arg-type]
            )


def _fused_adam(
    params: list[Tensor],
    grads: list[Tensor],
    exp_avgs: list[Tensor],
    exp_avg_sqs: list[Tensor],
    max_exp_avg_sqs: list[Tensor],
    state_steps: list[Tensor],
    grad_scale: Optional[Tensor],
    found_inf: Optional[Tensor],
    *,
    amsgrad: bool,
    has_complex: bool,  # Needed for consistency.
    beta1: float,
    beta2: float,
    lr: Union[float, Tensor],
    weight_decay: float,
    eps: float,
    maximize: bool,
    capturable: bool,  # Needed for consistency.
    differentiable: bool,
    decoupled_weight_decay: bool,
) -> None:
    if not params:
        return
    if differentiable:
        raise RuntimeError("Adam with fused=True does not support differentiable=True")

    grad_scale_dict: DeviceDict = (
        {grad_scale.device: grad_scale} if grad_scale is not None else {}
    )
    found_inf_dict: DeviceDict = (
        {found_inf.device: found_inf} if found_inf is not None else {}
    )

    # We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer
    # treating it as a scalar.
    lr_dict: Optional[DeviceDict] = (
        {lr.device: lr} if isinstance(lr, Tensor) and str(lr.device) != "cpu" else None
    )
    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
        [params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]  # type: ignore[list-item]
    )
    for (device, _), (
        (
            device_params_,
            device_grads_,
            device_exp_avgs_,
            device_exp_avg_sqs_,
            device_max_exp_avg_sqs,
            device_state_steps_,
        ),
        _,
    ) in grouped_tensors.items():
        device_params = cast(list[Tensor], device_params_)
        device_grads = cast(list[Tensor], device_grads_)
        device_exp_avgs = cast(list[Tensor], device_exp_avgs_)
        device_exp_avg_sqs = cast(list[Tensor], device_exp_avg_sqs_)
        device_state_steps = cast(list[Tensor], device_state_steps_)

        if device.type == "mps":  # type: ignore[union-attr]
            assert found_inf is None and grad_scale is None

        device_grad_scale, device_found_inf = None, None
        if grad_scale is not None:
            device_grad_scale = grad_scale_dict.setdefault(
                device, grad_scale.to(device, non_blocking=True)
            )
        if found_inf is not None:
            device_found_inf = found_inf_dict.setdefault(
                device, found_inf.to(device, non_blocking=True)
            )
        if lr_dict is not None and device not in lr_dict:
            lr_dict[device] = lr.to(device=device, non_blocking=True)  # type: ignore[union-attr]
            lr = lr_dict[device]
        torch._foreach_add_(device_state_steps, 1)
        func = torch._fused_adam_ if not decoupled_weight_decay else torch._fused_adamw_
        func(
            device_params,
            device_grads,
            device_exp_avgs,
            device_exp_avg_sqs,
            device_max_exp_avg_sqs,  # type: ignore[arg-type]
            device_state_steps,
            amsgrad=amsgrad,
            lr=lr,  # type: ignore[arg-type]
            beta1=beta1,
            beta2=beta2,
            weight_decay=weight_decay,
            eps=eps,
            maximize=maximize,
            grad_scale=device_grad_scale,
            found_inf=device_found_inf,
        )
        if device_found_inf is not None:
            torch._foreach_sub_(
                device_state_steps, [device_found_inf] * len(device_state_steps)
            )


@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adam)
def adam(
    params: list[Tensor],
    grads: list[Tensor],
    exp_avgs: list[Tensor],
    exp_avg_sqs: list[Tensor],
    max_exp_avg_sqs: list[Tensor],
    state_steps: list[Tensor],
    # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
    # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
    foreach: Optional[bool] = None,
    capturable: bool = False,
    differentiable: bool = False,
    fused: Optional[bool] = None,
    grad_scale: Optional[Tensor] = None,
    found_inf: Optional[Tensor] = None,
    has_complex: bool = False,
    decoupled_weight_decay: bool = False,
    *,
    amsgrad: bool,
    beta1: float,
    beta2: float,
    lr: Union[float, Tensor],
    weight_decay: float,
    eps: float,
    maximize: bool,
):
    r"""Functional API that performs Adam algorithm computation.

    See :class:`~torch.optim.Adam` for details.
    """
    # Respect when the user inputs False/True for foreach or fused. We only want to change
    # the default when neither have been user-specified. Note that we default to foreach
    # and pass False to use_fused. This is not a mistake--we want to give the fused impl
    # bake-in time before making it the default, even if it is typically faster.
    if fused is None and foreach is None:
        _, foreach = _default_to_fused_or_foreach(
            params, differentiable, use_fused=False
        )
        # Do not flip on foreach for the unsupported case where lr is a Tensor and capturable=False.
        if foreach and isinstance(lr, Tensor) and not capturable:
            foreach = False
    if fused is None:
        fused = False
    if foreach is None:
        foreach = False

    # this check is slow during compilation, so we skip it
    # if it's strictly needed we can add this check back in dynamo
    if not torch.compiler.is_compiling() and not all(
        isinstance(t, torch.Tensor) for t in state_steps
    ):
        raise RuntimeError(
            "API has changed, `state_steps` argument must contain a list of singleton tensors"
        )

    if foreach and torch.jit.is_scripting():
        raise RuntimeError("torch.jit.script not supported with foreach optimizers")
    if fused and torch.jit.is_scripting():
        raise RuntimeError("torch.jit.script not supported with fused optimizers")

    if fused and not torch.jit.is_scripting():
        func = _fused_adam
    elif foreach and not torch.jit.is_scripting():
        func = _multi_tensor_adam
    else:
        func = _single_tensor_adam

    func(
        params,
        grads,
        exp_avgs,
        exp_avg_sqs,
        max_exp_avg_sqs,
        state_steps,
        amsgrad=amsgrad,
        has_complex=has_complex,
        beta1=beta1,
        beta2=beta2,
        lr=lr,
        weight_decay=weight_decay,
        eps=eps,
        maximize=maximize,
        capturable=capturable,
        differentiable=differentiable,
        grad_scale=grad_scale,
        found_inf=found_inf,
        decoupled_weight_decay=decoupled_weight_decay,
    )