extern "C" { | |
/** | |
* @brief Status code for any NNPACK function call. | |
*/ | |
enum nnp_status { | |
/** The call succeeded, and all output arguments now contain valid data. */ | |
nnp_status_success = 0, | |
/** NNPACK function was called with batch_size == 0. */ | |
nnp_status_invalid_batch_size = 2, | |
/** NNPACK function was called with channels == 0. */ | |
nnp_status_invalid_channels = 3, | |
/** NNPACK function was called with input_channels == 0. */ | |
nnp_status_invalid_input_channels = 4, | |
/** NNPACK function was called with output_channels == 0. */ | |
nnp_status_invalid_output_channels = 5, | |
/** NNPACK function was called with input_size.height == 0 or input_size.width == 0 */ | |
nnp_status_invalid_input_size = 10, | |
/** NNPACK function was called with input_stride.height == 0 or input_stride.width == 0 */ | |
nnp_status_invalid_input_stride = 11, | |
/** NNPACK function was called with input_padding not less than respective kernel (or pooling) size, i.e.: | |
* | |
* - input_padding.left >= kernel_size.width (>= pooling_size.width) | |
* - input_padding.right >= kernel_size.width (>= pooling_size.width) | |
* - input_padding.top >= kernel_size.height (>= pooling_size.height) | |
* - input_padding.bottom >= kernel_size.height (>= pooling_size.height) | |
*/ | |
nnp_status_invalid_input_padding = 12, | |
/** NNPACK function was called with kernel_size.height == 0 or kernel_size.width == 0 */ | |
nnp_status_invalid_kernel_size = 13, | |
/** NNPACK function was called with pooling_size.height == 0 or pooling_size.width == 0 */ | |
nnp_status_invalid_pooling_size = 14, | |
/** NNPACK function was called with pooling_stride.height == 0 or pooling_stride.width == 0 */ | |
nnp_status_invalid_pooling_stride = 15, | |
/** NNPACK function was called with convolution algorithm not in nnp_convolution_algorithm enumeration */ | |
nnp_status_invalid_algorithm = 16, | |
/** NNPACK function was called with convolution transform strategy not in nnp_convolution_transform_strategy enum */ | |
nnp_status_invalid_transform_strategy = 17, | |
/** NNPACK function was called with output_subsampling.height == 0 or output_subsampling.width == 0 */ | |
nnp_status_invalid_output_subsampling = 13, | |
/** NNPACK function was called with activation not in nnp_activation enum */ | |
nnp_status_invalid_activation = 14, | |
/** NNPACK function was called with invalid activation parameters */ | |
nnp_status_invalid_activation_parameters = 15, | |
/** NNPACK does not support the particular input size for the function */ | |
nnp_status_unsupported_input_size = 20, | |
/** NNPACK does not support the particular input stride for the function */ | |
nnp_status_unsupported_input_stride = 21, | |
/** NNPACK does not support the particular input padding for the function */ | |
nnp_status_unsupported_input_padding = 22, | |
/** NNPACK does not support the particular kernel size for the function */ | |
nnp_status_unsupported_kernel_size = 23, | |
/** NNPACK does not support the particular pooling size for the function */ | |
nnp_status_unsupported_pooling_size = 24, | |
/** NNPACK does not support the particular pooling stride for the function */ | |
nnp_status_unsupported_pooling_stride = 25, | |
/** NNPACK does not support the particular convolution algorithm for the function */ | |
nnp_status_unsupported_algorithm = 26, | |
/** NNPACK does not support the particular convolution transform strategy for the algorithm */ | |
nnp_status_unsupported_transform_strategy = 27, | |
/** NNPACK does not support the particular activation function for the function */ | |
nnp_status_unsupported_activation = 28, | |
/** NNPACK does not support the particular activation function parameters for the function */ | |
nnp_status_unsupported_activation_parameters = 29, | |
/** NNPACK function was called before the library was initialized */ | |
nnp_status_uninitialized = 50, | |
/** NNPACK does not implement this function for the host CPU */ | |
nnp_status_unsupported_hardware = 51, | |
/** NNPACK failed to allocate memory for temporary buffers */ | |
nnp_status_out_of_memory = 52, | |
/** Scratch space buffer is too small */ | |
nnp_status_insufficient_buffer = 53, | |
/** Scratch space buffer is not properly aligned */ | |
nnp_status_misaligned_buffer = 54 | |
}; | |
/** | |
* @brief Activation applied applied after a convolutional or fully-connected layer. | |
*/ | |
enum nnp_activation { | |
/** Identity activation f(x) := x, i.e. no transformation */ | |
nnp_activation_identity = 0, | |
/** ReLU activation f(x) := max(0, x) */ | |
nnp_activation_relu = 1, | |
}; | |
/** | |
* @brief Algorithm for computing convolutional layers. | |
*/ | |
enum nnp_convolution_algorithm { | |
/** Let NNPACK choose the algorithm depending on layer parameters */ | |
nnp_convolution_algorithm_auto = 0, | |
/** Tiled convolution based on 2D Fourier transform with 8x8 blocks. Supports kernels up to 8x8. */ | |
nnp_convolution_algorithm_ft8x8 = 1, | |
/** Tiled convolution based on 2D Fourier transform with 16x16 blocks. Supports kernels up to 16x16. */ | |
nnp_convolution_algorithm_ft16x16 = 2, | |
/** Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks. Supports only 3x3 kernels. */ | |
nnp_convolution_algorithm_wt8x8 = 3, | |
/** Direct convolution via implicit GEMM. */ | |
nnp_convolution_algorithm_implicit_gemm = 4, | |
/** Direct convolution implementation. */ | |
nnp_convolution_algorithm_direct = 5, | |
/** | |
* Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks in FP16. | |
* Supports only 3x3 kernels. Implemented only for new ARM processors (with NEON-HP), | |
* on non-supported processors falls back to nnp_convolution_algorithm_wt8x8. | |
*/ | |
nnp_convolution_algorithm_wt8x8_fp16 = 6, | |
}; | |
enum nnp_convolution_transform_strategy { | |
nnp_convolution_transform_strategy_compute = 1, | |
nnp_convolution_transform_strategy_precompute = 2, | |
nnp_convolution_transform_strategy_reuse = 3 | |
}; | |
/* For backward compatibility */ | |
/** | |
* @brief Size of images, kernels, and pooling filters in NNPACK. | |
*/ | |
struct nnp_size { | |
/** Width (horizontal size) of an image, kernel, or pooling filter. */ | |
size_t width; | |
/** Height (vertical size) of an image, kernel, or pooling filter. */ | |
size_t height; | |
}; | |
/** | |
* @brief Padding of images in NNPACK. | |
*/ | |
struct nnp_padding { | |
/** Padding above the image data */ | |
size_t top; | |
/** Padding on the right of image data */ | |
size_t right; | |
/** Padding below the image data */ | |
size_t bottom; | |
/** Padding on the left of image data */ | |
size_t left; | |
}; | |
/** | |
* @brief Profiling information about time spent in different phases of a function call. | |
*/ | |
struct nnp_profile { | |
/** Time spent inside the function call, in seconds. */ | |
double total; | |
/** Time spend on transformation of the input or input gradient tensor, in seconds. */ | |
double input_transform; | |
/** Time spend on transformation of the kernel or kernel gradient tensor, in seconds. */ | |
double kernel_transform; | |
/** Time spend on transformation of the output or output gradient tensor, in seconds. */ | |
double output_transform; | |
/** Time spend on multiplication-accumulation of transformed coefficients, in seconds. */ | |
double block_multiplication; | |
}; | |
enum nnp_status nnp_initialize(void); | |
enum nnp_status nnp_deinitialize(void); | |
/** | |
* @brief Computes output of a 2D convolutional layer from input and kernel tensors. | |
* @details This function targets training of convolutional neural networks and performs forward propagation. | |
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch. | |
* For minibatch size 1, use nnp_convolution_inference for optimal performance. | |
* @param algorithm The type of algorithm to use for convolution. Possible values are: | |
* | |
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm. | |
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks. | |
* Supports kernels up to 8x8. | |
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks. | |
* Supports kernels up to 16x16. | |
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6). | |
* Supports only 3x3 kernels. | |
* | |
* @param batch_size The number of images on the input and output of the convolutional layer. | |
* @param input_channels The number of channels (AKA features, dimensions) in the input images. | |
* @param output_channels The number of channels (AKA features, dimensions) in the output images. | |
* @param input_size Size of input images, excluding implicit zero-padding. | |
* @param input_padding Implicit zero-padding of input images. | |
* @param kernel_size Kernel size. | |
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width]. | |
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width]. | |
* @param[in] bias A 1D array bias[output_channels]. | |
* @param[out] output A 4D tensor output[batch_size][output_channels][output_size.height][output_size.width] where | |
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) - | |
* (kernel_size.height - 1) | |
* output_size.width = (input_padding.left + input_size.width + input_padding.right) - | |
* (kernel_size.width - 1) | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
* @param[out] profile An optional pointer to profiling structure. | |
* If provided, the structure would record time spent in different phases of the computation. | |
*/ | |
enum nnp_status nnp_convolution_output( | |
enum nnp_convolution_algorithm algorithm, | |
size_t batch_size, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
const float* input, | |
const float* kernel, | |
const float* bias, | |
float* output, | |
void* workspace_buffer, | |
size_t* workspace_size, | |
enum nnp_activation activation, | |
const void* activation_parameters, | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile); | |
/** | |
* @brief Computes gradient of input of a 2D convolutional layer from gradient of output and kernel tensors. | |
* @details This function targets training of convolutional neural networks and performs backward propagation. | |
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch. | |
* @param algorithm The type of algorithm to use for convolution. Possible values are: | |
* | |
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm. | |
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks. | |
* Supports kernels up to 8x8. | |
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks. | |
* Supports kernels up to 16x16. | |
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6). | |
* Supports only 3x3 kernels. | |
* | |
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer. | |
* @param input_channels The number of channels (AKA features, dimensions) in the input images (and gradients). | |
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients). | |
* @param input_size Size of input images and their gradients, excluding implicit zero-padding. | |
* @param input_padding Implicit zero-padding of input images. | |
* @param kernel_size Kernel size. | |
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width] | |
* where | |
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) - | |
* (kernel_size.height - 1) | |
* output_size.width = (input_padding.left + input_size.width + input_padding.right) - | |
* (kernel_size.width - 1) | |
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width]. | |
* @param[out] grad_input A 4D tensor grad_input[batch_size][input_channels][input_size.height][input_size.width]. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
* @param[out] profile An optional pointer to profiling structure. | |
* If provided, the structure would record time spent in different phases of the computation. | |
*/ | |
enum nnp_status nnp_convolution_input_gradient( | |
enum nnp_convolution_algorithm algorithm, | |
size_t batch_size, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
const float* grad_output, | |
const float* kernel, | |
float* grad_input, | |
void* workspace_buffer, | |
size_t* workspace_size, | |
enum nnp_activation activation, | |
const void* activation_parameters, | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile); | |
/** | |
* @brief Computes gradient of kernel of a 2D convolutional layer from gradient of output and input tensors. | |
* @details This function targets training of convolutional neural networks and performs backward propagation. | |
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch. | |
* @param algorithm The type of algorithm to use for convolution. Possible values are: | |
* | |
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm. | |
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks. | |
* Supports kernels up to 8x8. | |
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks. | |
* Supports kernels up to 16x16. | |
* | |
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer. | |
* @param input_channels The number of channels (AKA features, dimensions) in the input images. | |
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients). | |
* @param input_size Size of input images and their gradients, excluding implicit zero-padding. | |
* @param input_padding Implicit zero-padding of input images. | |
* @param kernel_size Kernel size. | |
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width]. | |
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width] | |
* where | |
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) - | |
* (kernel_size.height - 1) | |
* output_size.width = (input_padding.left + input_size.width + input_padding.right) - | |
* (kernel_size.width - 1) | |
* @param[out] grad_kernel A 4D tensor | |
* grad_kernel[output_channels][input_channels][kernel_size.height][kernel_size.width]. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
* @param[out] profile An optional pointer to profiling structure. | |
* If provided, the structure would record time spent in different phases of the computation. | |
*/ | |
enum nnp_status nnp_convolution_kernel_gradient( | |
enum nnp_convolution_algorithm algorithm, | |
size_t batch_size, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
const float* input, | |
const float* grad_output, | |
float* grad_kernel, | |
void* workspace_buffer, | |
size_t* workspace_size, | |
enum nnp_activation activation, | |
const void* activation_parameters, | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile); | |
/** | |
* @brief Computes output of a 2D convolutional layer for a single input image and a kernel tensor. | |
* @details This function targets prediction with convolutional neural networks and performs forward propagation. | |
* @param algorithm The type of algorithm to use for convolution. Possible values are: | |
* | |
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm. | |
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks. | |
* Supports kernels up to 8x8. | |
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks. | |
* Supports kernels up to 16x16. | |
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6). | |
* Supports only 3x3 kernels. | |
* | |
* @param transform_strategy A strategy that guides computation of kernel transforms coefficients. | |
* Possible values are: | |
* | |
* - nnp_convolution_transform_strategy_block_based -- do multiplication-accumulations on blocks of transformed | |
* coefficients. | |
* - nnp_convolution_transform_strategy_tuple_based -- do multiplication-accumulations on tuples of transformed | |
* coefficients. | |
* | |
* @param input_channels The number of channels (AKA features, dimensions) in the input image. | |
* @param output_channels The number of channels (AKA features, dimensions) in the output image. | |
* @param input_size Size of input image, excluding implicit zero-padding. | |
* @param input_padding Implicit zero-padding of input image. | |
* @param kernel_size Kernel size. | |
* @param output_subsampling Subsample region for output, also known as convolution stride. | |
* @param[in] input A 3D tensor input[input_channels][input_size.height][input_size.width]. | |
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width]. | |
* @param[in] bias A 1D array bias[output_channels]. | |
* @param[out] output A 3D tensor output[output_channels][output_size.height][output_size.width] where | |
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) - | |
* (kernel_size.height - 1) | |
* output_size.width = (input_padding.left + input_size.width + input_padding.right) - | |
* (kernel_size.width - 1) | |
* @param[in] workspace_buffer Buffer for scratch memory used during computation. Buffer must be aligned on 64 bytes. | |
* If workspace_buffer is NULL and workspace_size is non-NULL, NNPACK would store the size | |
* of required workspace memory at the workspace_size location, and exit without | |
* computations. | |
* If workspace_buffer is NULL and workspace_size is NULL, NNPACK would allocate memory | |
* before and deallocate after this computation, potentially at significant runtime cost. | |
* @param[in,out] workspace_size Pointer to the size of workspace buffer. | |
* If workspace_buffer is NULL, NNPACK will write the size of required scratch memory to | |
* the location specified by this pointer. | |
* If workspace_buffer is non-NULL, NNPACK expects workspace_size to specify the size of | |
* the buffer, in bytes. | |
* If workspace_size is NULL, workspace_buffer must be NULL as well. In this case NNPACK | |
* would allocate memory before and deallocate after this computation, potentially at | |
* significant runtime cost. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
* @param[out] profile An optional pointer to profiling structure. | |
* If provided, the structure would record time spent in different phases of the computation. | |
*/ | |
enum nnp_status nnp_convolution_inference( | |
enum nnp_convolution_algorithm algorithm, | |
enum nnp_convolution_transform_strategy transform_strategy, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
struct nnp_size output_subsampling, | |
const float* input, | |
const float* kernel, | |
const float* bias, | |
float* output, | |
void* workspace_buffer, | |
size_t* workspace_size, | |
enum nnp_activation activation, | |
const void* activation_parameters, | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile); | |
/** | |
* @brief Computes output of a fully connected layer from input and kernel matrices. | |
* @details This function targets training of convolutional neural networks and performs forward propagation. | |
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch. | |
* For minibatch size 1, use nnp_fully_connected_inference for optimal performance. | |
* @param batch_size The number of vectors on the input and output of the fully connected layer. | |
* @param input_channels The number of channels (AKA features, dimensions) in the input matrix. | |
* @param output_channels The number of channels (AKA features, dimensions) in the output matrix. | |
* @param[in] input A 2D matrix input[batch_size][input_channels]. | |
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels]. | |
* @param[out] output A 2D matrix output[batch_size][output_channels]. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
*/ | |
enum nnp_status nnp_fully_connected_output( | |
size_t batch_size, | |
size_t input_channels, | |
size_t output_channels, | |
const float input[], | |
const float kernel[], | |
float output[], | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile); | |
/** | |
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix. | |
* @details This function targets prediction with convolutional neural networks and performs forward propagation. | |
* @param input_channels The number of channels (AKA features, dimensions) in the input vector. | |
* @param output_channels The number of channels (AKA features, dimensions) in the output vector. | |
* @param[in] input A 1D array input[input_channels] of FP32 elements. | |
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP32 elements. | |
* @param[out] output A 1D array output[output_channels] of FP32 elements. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
*/ | |
enum nnp_status nnp_fully_connected_inference( | |
size_t input_channels, | |
size_t output_channels, | |
const float* input, | |
const float* kernel, | |
float* output, | |
pthreadpool_t threadpool); | |
/** | |
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix. | |
* @details This function targets prediction with convolutional neural networks and performs forward propagation. | |
* @param input_channels The number of channels (AKA features, dimensions) in the input vector. | |
* @param output_channels The number of channels (AKA features, dimensions) in the output vector. | |
* @param[in] input A 1D array input[input_channels] of FP32 elements. | |
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP16 (ARM alternative format) elements. | |
* @param[out] output A 1D array output[output_channels] of FP32 elements. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
*/ | |
enum nnp_status nnp_fully_connected_inference_f16f32( | |
size_t input_channels, | |
size_t output_channels, | |
const float* input, | |
const void* kernel, | |
float* output, | |
pthreadpool_t threadpool); | |
/** | |
* @brief Computes output of a max-pooling layer for an input tensor. | |
* @details This function targets both prediction and training of convolutional neural networks and performs forward | |
* propagation. Is is optimized for both large and small minibatch sizes. | |
* @param batch_size The number of images on the input and output of the max-pooling layer. | |
* @param channels The number of channels (AKA features, dimensions) in both input and output images. | |
* @param input_size Size of input images, excluding implicit zero-padding. | |
* @param input_padding Implicit padding of input images. The padding pixels are ignored by the pooling filter, but | |
* affect the output size. | |
* @param pooling_size Size of the pooling filter. Only 2x2 filter are currently supported. | |
* @param pooling_stride Stride of the pooling filter. Only 2x2 strides are currently supported. | |
* @param[in] input A 4D tensor input[batch_size][channels][input_size.height][input_size.width]. | |
* @param[out] output A 4D tensor output[batch_size][channels][output_size.height][output_size.width] where | |
* output_size.height = ceil( | |
* (input_padding.top + input_size.height + input_padding.bottom - pooling_size.height) / | |
* pooling_stride.height) + 1 | |
* output_size.width = ceil( | |
* (input_padding.left + input_size.width + input_padding.right - pooling_size.width) / | |
* pooling_stride.width) + 1 | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
*/ | |
enum nnp_status nnp_max_pooling_output( | |
size_t batch_size, | |
size_t channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size pooling_size, | |
struct nnp_size pooling_stride, | |
const float input[], | |
float output[], | |
pthreadpool_t threadpool); | |
/** | |
* @brief Computes output of a softmax layer for an input matrix. | |
* @details This function targets both prediction and training of convolutional neural networks and performs forward | |
* propagation. Is is optimized for both large and small minibatch sizes. | |
* @param batch_size The number of vectors on the input and output of the softmax layer. | |
* @param channels The number of channels (AKA features, dimensions) in both input and output vectors. | |
* @param[in] input A 2D matrix input[batch_size][channels]. | |
* @param[out] output A 2D matrix output[batch_size][channels]. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
*/ | |
enum nnp_status nnp_softmax_output( | |
size_t batch_size, | |
size_t channels, | |
const float input[], | |
float output[], | |
pthreadpool_t threadpool); | |
/** | |
* @brief Computes output of a rectified linear unit (ReLU) layer for an input matrix. | |
* @details This function targets both prediction and training of convolutional neural networks and performs forward | |
* propagation. Is is optimized for both large and small minibatch sizes. | |
* @param batch_size The number of vectors on the input and output of the ReLU layer. | |
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices. | |
* @param[in] input A 2D matrix input[batch_size][channels]. | |
* @param[out] output A 2D matrix output[batch_size][channels]. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
*/ | |
enum nnp_status nnp_relu_output( | |
size_t batch_size, | |
size_t channels, | |
const float input[], | |
float output[], | |
float negative_slope, | |
pthreadpool_t threadpool); | |
/** | |
* @brief Computes gradient of input of a rectified linear unit (ReLU) layer from gradient of output and input matrices. | |
* @details This function targets training of convolutional neural networks and performs backward propagation. | |
* Is is optimized for both large and small minibatch sizes. | |
* @param batch_size The number of vectors on the input and output of the ReLU layer. | |
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices. | |
* @param[in] input A 2D matrix input[batch_size][channels]. | |
* @param[out] output A 2D matrix output[batch_size][channels]. | |
* @param threadpool A thread pool for parallelization of the computation. | |
* If threadpool is NULL, the computation would run on the caller thread without parallelization. | |
*/ | |
enum nnp_status nnp_relu_input_gradient( | |
size_t batch_size, | |
size_t channels, | |
const float grad_output[], | |
const float input[], | |
float grad_input[], | |
float negative_slope, | |
pthreadpool_t threadpool); | |
} /* extern "C" */ | |
// Backward compatible implementations for nnp_convolution_*, if we are in C++ | |
// mode. | |
inline enum nnp_status nnp_convolution_output( | |
enum nnp_convolution_algorithm algorithm, | |
size_t batch_size, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
const float input[], | |
const float kernel[], | |
const float bias[], | |
float output[], | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile) | |
{ | |
return nnp_convolution_output( | |
algorithm, | |
batch_size, input_channels, output_channels, | |
input_size, input_padding, kernel_size, | |
input, kernel, bias, output, | |
NULL, NULL, | |
nnp_activation_identity, NULL, threadpool, profile); | |
} | |
inline enum nnp_status nnp_convolution_input_gradient( | |
enum nnp_convolution_algorithm algorithm, | |
size_t batch_size, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
const float grad_output[], | |
const float kernel[], | |
float grad_input[], | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile) | |
{ | |
return nnp_convolution_input_gradient( | |
algorithm, | |
batch_size, input_channels, output_channels, | |
input_size, input_padding, kernel_size, | |
grad_output, kernel, grad_input, | |
NULL, NULL, | |
nnp_activation_identity, NULL, threadpool, profile); | |
} | |
inline enum nnp_status nnp_convolution_kernel_gradient( | |
enum nnp_convolution_algorithm algorithm, | |
size_t batch_size, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
const float input[], | |
const float grad_output[], | |
float grad_kernel[], | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile) | |
{ | |
return nnp_convolution_kernel_gradient( | |
algorithm, | |
batch_size, input_channels, output_channels, | |
input_size, input_padding, kernel_size, | |
input, grad_output, grad_kernel, | |
NULL, NULL, | |
nnp_activation_identity, NULL, threadpool, profile); | |
} | |
inline enum nnp_status nnp_convolution_inference( | |
enum nnp_convolution_algorithm algorithm, | |
enum nnp_convolution_transform_strategy transform_strategy, | |
size_t input_channels, | |
size_t output_channels, | |
struct nnp_size input_size, | |
struct nnp_padding input_padding, | |
struct nnp_size kernel_size, | |
struct nnp_size output_subsampling, | |
const float input[], | |
const float kernel[], | |
const float bias[], | |
float output[], | |
pthreadpool_t threadpool, | |
struct nnp_profile* profile) { | |
return nnp_convolution_inference( | |
algorithm, transform_strategy, | |
input_channels, output_channels, | |
input_size, input_padding, kernel_size, output_subsampling, | |
input, kernel, bias, output, NULL, NULL, | |
nnp_activation_identity, NULL, | |
threadpool, profile); | |
} | |