File size: 33,083 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
#pragma once
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <pthreadpool.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Status code for any NNPACK function call.
*/
enum nnp_status {
/** The call succeeded, and all output arguments now contain valid data. */
nnp_status_success = 0,
/** NNPACK function was called with batch_size == 0. */
nnp_status_invalid_batch_size = 2,
/** NNPACK function was called with channels == 0. */
nnp_status_invalid_channels = 3,
/** NNPACK function was called with input_channels == 0. */
nnp_status_invalid_input_channels = 4,
/** NNPACK function was called with output_channels == 0. */
nnp_status_invalid_output_channels = 5,
/** NNPACK function was called with input_size.height == 0 or input_size.width == 0 */
nnp_status_invalid_input_size = 10,
/** NNPACK function was called with input_stride.height == 0 or input_stride.width == 0 */
nnp_status_invalid_input_stride = 11,
/** NNPACK function was called with input_padding not less than respective kernel (or pooling) size, i.e.:
*
* - input_padding.left >= kernel_size.width (>= pooling_size.width)
* - input_padding.right >= kernel_size.width (>= pooling_size.width)
* - input_padding.top >= kernel_size.height (>= pooling_size.height)
* - input_padding.bottom >= kernel_size.height (>= pooling_size.height)
*/
nnp_status_invalid_input_padding = 12,
/** NNPACK function was called with kernel_size.height == 0 or kernel_size.width == 0 */
nnp_status_invalid_kernel_size = 13,
/** NNPACK function was called with pooling_size.height == 0 or pooling_size.width == 0 */
nnp_status_invalid_pooling_size = 14,
/** NNPACK function was called with pooling_stride.height == 0 or pooling_stride.width == 0 */
nnp_status_invalid_pooling_stride = 15,
/** NNPACK function was called with convolution algorithm not in nnp_convolution_algorithm enumeration */
nnp_status_invalid_algorithm = 16,
/** NNPACK function was called with convolution transform strategy not in nnp_convolution_transform_strategy enum */
nnp_status_invalid_transform_strategy = 17,
/** NNPACK function was called with output_subsampling.height == 0 or output_subsampling.width == 0 */
nnp_status_invalid_output_subsampling = 13,
/** NNPACK function was called with activation not in nnp_activation enum */
nnp_status_invalid_activation = 14,
/** NNPACK function was called with invalid activation parameters */
nnp_status_invalid_activation_parameters = 15,
/** NNPACK does not support the particular input size for the function */
nnp_status_unsupported_input_size = 20,
/** NNPACK does not support the particular input stride for the function */
nnp_status_unsupported_input_stride = 21,
/** NNPACK does not support the particular input padding for the function */
nnp_status_unsupported_input_padding = 22,
/** NNPACK does not support the particular kernel size for the function */
nnp_status_unsupported_kernel_size = 23,
/** NNPACK does not support the particular pooling size for the function */
nnp_status_unsupported_pooling_size = 24,
/** NNPACK does not support the particular pooling stride for the function */
nnp_status_unsupported_pooling_stride = 25,
/** NNPACK does not support the particular convolution algorithm for the function */
nnp_status_unsupported_algorithm = 26,
/** NNPACK does not support the particular convolution transform strategy for the algorithm */
nnp_status_unsupported_transform_strategy = 27,
/** NNPACK does not support the particular activation function for the function */
nnp_status_unsupported_activation = 28,
/** NNPACK does not support the particular activation function parameters for the function */
nnp_status_unsupported_activation_parameters = 29,
/** NNPACK function was called before the library was initialized */
nnp_status_uninitialized = 50,
/** NNPACK does not implement this function for the host CPU */
nnp_status_unsupported_hardware = 51,
/** NNPACK failed to allocate memory for temporary buffers */
nnp_status_out_of_memory = 52,
/** Scratch space buffer is too small */
nnp_status_insufficient_buffer = 53,
/** Scratch space buffer is not properly aligned */
nnp_status_misaligned_buffer = 54
};
/**
* @brief Activation applied applied after a convolutional or fully-connected layer.
*/
enum nnp_activation {
/** Identity activation f(x) := x, i.e. no transformation */
nnp_activation_identity = 0,
/** ReLU activation f(x) := max(0, x) */
nnp_activation_relu = 1,
};
/**
* @brief Algorithm for computing convolutional layers.
*/
enum nnp_convolution_algorithm {
/** Let NNPACK choose the algorithm depending on layer parameters */
nnp_convolution_algorithm_auto = 0,
/** Tiled convolution based on 2D Fourier transform with 8x8 blocks. Supports kernels up to 8x8. */
nnp_convolution_algorithm_ft8x8 = 1,
/** Tiled convolution based on 2D Fourier transform with 16x16 blocks. Supports kernels up to 16x16. */
nnp_convolution_algorithm_ft16x16 = 2,
/** Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks. Supports only 3x3 kernels. */
nnp_convolution_algorithm_wt8x8 = 3,
/** Direct convolution via implicit GEMM. */
nnp_convolution_algorithm_implicit_gemm = 4,
/** Direct convolution implementation. */
nnp_convolution_algorithm_direct = 5,
/**
* Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks in FP16.
* Supports only 3x3 kernels. Implemented only for new ARM processors (with NEON-HP),
* on non-supported processors falls back to nnp_convolution_algorithm_wt8x8.
*/
nnp_convolution_algorithm_wt8x8_fp16 = 6,
};
enum nnp_convolution_transform_strategy {
nnp_convolution_transform_strategy_compute = 1,
nnp_convolution_transform_strategy_precompute = 2,
nnp_convolution_transform_strategy_reuse = 3
};
/* For backward compatibility */
#define nnp_convolution_transform_strategy_block_based nnp_convolution_transform_strategy_compute
#define nnp_convolution_transform_strategy_tuple_based nnp_convolution_transform_strategy_compute
/**
* @brief Size of images, kernels, and pooling filters in NNPACK.
*/
struct nnp_size {
/** Width (horizontal size) of an image, kernel, or pooling filter. */
size_t width;
/** Height (vertical size) of an image, kernel, or pooling filter. */
size_t height;
};
/**
* @brief Padding of images in NNPACK.
*/
struct nnp_padding {
/** Padding above the image data */
size_t top;
/** Padding on the right of image data */
size_t right;
/** Padding below the image data */
size_t bottom;
/** Padding on the left of image data */
size_t left;
};
/**
* @brief Profiling information about time spent in different phases of a function call.
*/
struct nnp_profile {
/** Time spent inside the function call, in seconds. */
double total;
/** Time spend on transformation of the input or input gradient tensor, in seconds. */
double input_transform;
/** Time spend on transformation of the kernel or kernel gradient tensor, in seconds. */
double kernel_transform;
/** Time spend on transformation of the output or output gradient tensor, in seconds. */
double output_transform;
/** Time spend on multiplication-accumulation of transformed coefficients, in seconds. */
double block_multiplication;
};
enum nnp_status nnp_initialize(void);
enum nnp_status nnp_deinitialize(void);
/**
* @brief Computes output of a 2D convolutional layer from input and kernel tensors.
* @details This function targets training of convolutional neural networks and performs forward propagation.
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
* For minibatch size 1, use nnp_convolution_inference for optimal performance.
* @param algorithm The type of algorithm to use for convolution. Possible values are:
*
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
* Supports kernels up to 8x8.
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
* Supports kernels up to 16x16.
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
* Supports only 3x3 kernels.
*
* @param batch_size The number of images on the input and output of the convolutional layer.
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
* @param output_channels The number of channels (AKA features, dimensions) in the output images.
* @param input_size Size of input images, excluding implicit zero-padding.
* @param input_padding Implicit zero-padding of input images.
* @param kernel_size Kernel size.
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
* @param[in] bias A 1D array bias[output_channels].
* @param[out] output A 4D tensor output[batch_size][output_channels][output_size.height][output_size.width] where
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
* (kernel_size.height - 1)
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
* (kernel_size.width - 1)
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
* @param[out] profile An optional pointer to profiling structure.
* If provided, the structure would record time spent in different phases of the computation.
*/
enum nnp_status nnp_convolution_output(
enum nnp_convolution_algorithm algorithm,
size_t batch_size,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
const float* input,
const float* kernel,
const float* bias,
float* output,
void* workspace_buffer,
size_t* workspace_size,
enum nnp_activation activation,
const void* activation_parameters,
pthreadpool_t threadpool,
struct nnp_profile* profile);
/**
* @brief Computes gradient of input of a 2D convolutional layer from gradient of output and kernel tensors.
* @details This function targets training of convolutional neural networks and performs backward propagation.
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
* @param algorithm The type of algorithm to use for convolution. Possible values are:
*
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
* Supports kernels up to 8x8.
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
* Supports kernels up to 16x16.
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
* Supports only 3x3 kernels.
*
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
* @param input_channels The number of channels (AKA features, dimensions) in the input images (and gradients).
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
* @param input_padding Implicit zero-padding of input images.
* @param kernel_size Kernel size.
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
* where
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
* (kernel_size.height - 1)
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
* (kernel_size.width - 1)
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
* @param[out] grad_input A 4D tensor grad_input[batch_size][input_channels][input_size.height][input_size.width].
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
* @param[out] profile An optional pointer to profiling structure.
* If provided, the structure would record time spent in different phases of the computation.
*/
enum nnp_status nnp_convolution_input_gradient(
enum nnp_convolution_algorithm algorithm,
size_t batch_size,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
const float* grad_output,
const float* kernel,
float* grad_input,
void* workspace_buffer,
size_t* workspace_size,
enum nnp_activation activation,
const void* activation_parameters,
pthreadpool_t threadpool,
struct nnp_profile* profile);
/**
* @brief Computes gradient of kernel of a 2D convolutional layer from gradient of output and input tensors.
* @details This function targets training of convolutional neural networks and performs backward propagation.
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
* @param algorithm The type of algorithm to use for convolution. Possible values are:
*
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
* Supports kernels up to 8x8.
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
* Supports kernels up to 16x16.
*
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
* @param input_padding Implicit zero-padding of input images.
* @param kernel_size Kernel size.
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
* where
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
* (kernel_size.height - 1)
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
* (kernel_size.width - 1)
* @param[out] grad_kernel A 4D tensor
* grad_kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
* @param[out] profile An optional pointer to profiling structure.
* If provided, the structure would record time spent in different phases of the computation.
*/
enum nnp_status nnp_convolution_kernel_gradient(
enum nnp_convolution_algorithm algorithm,
size_t batch_size,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
const float* input,
const float* grad_output,
float* grad_kernel,
void* workspace_buffer,
size_t* workspace_size,
enum nnp_activation activation,
const void* activation_parameters,
pthreadpool_t threadpool,
struct nnp_profile* profile);
/**
* @brief Computes output of a 2D convolutional layer for a single input image and a kernel tensor.
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
* @param algorithm The type of algorithm to use for convolution. Possible values are:
*
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
* Supports kernels up to 8x8.
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
* Supports kernels up to 16x16.
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
* Supports only 3x3 kernels.
*
* @param transform_strategy A strategy that guides computation of kernel transforms coefficients.
* Possible values are:
*
* - nnp_convolution_transform_strategy_block_based -- do multiplication-accumulations on blocks of transformed
* coefficients.
* - nnp_convolution_transform_strategy_tuple_based -- do multiplication-accumulations on tuples of transformed
* coefficients.
*
* @param input_channels The number of channels (AKA features, dimensions) in the input image.
* @param output_channels The number of channels (AKA features, dimensions) in the output image.
* @param input_size Size of input image, excluding implicit zero-padding.
* @param input_padding Implicit zero-padding of input image.
* @param kernel_size Kernel size.
* @param output_subsampling Subsample region for output, also known as convolution stride.
* @param[in] input A 3D tensor input[input_channels][input_size.height][input_size.width].
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
* @param[in] bias A 1D array bias[output_channels].
* @param[out] output A 3D tensor output[output_channels][output_size.height][output_size.width] where
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
* (kernel_size.height - 1)
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
* (kernel_size.width - 1)
* @param[in] workspace_buffer Buffer for scratch memory used during computation. Buffer must be aligned on 64 bytes.
* If workspace_buffer is NULL and workspace_size is non-NULL, NNPACK would store the size
* of required workspace memory at the workspace_size location, and exit without
* computations.
* If workspace_buffer is NULL and workspace_size is NULL, NNPACK would allocate memory
* before and deallocate after this computation, potentially at significant runtime cost.
* @param[in,out] workspace_size Pointer to the size of workspace buffer.
* If workspace_buffer is NULL, NNPACK will write the size of required scratch memory to
* the location specified by this pointer.
* If workspace_buffer is non-NULL, NNPACK expects workspace_size to specify the size of
* the buffer, in bytes.
* If workspace_size is NULL, workspace_buffer must be NULL as well. In this case NNPACK
* would allocate memory before and deallocate after this computation, potentially at
* significant runtime cost.
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
* @param[out] profile An optional pointer to profiling structure.
* If provided, the structure would record time spent in different phases of the computation.
*/
enum nnp_status nnp_convolution_inference(
enum nnp_convolution_algorithm algorithm,
enum nnp_convolution_transform_strategy transform_strategy,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
struct nnp_size output_subsampling,
const float* input,
const float* kernel,
const float* bias,
float* output,
void* workspace_buffer,
size_t* workspace_size,
enum nnp_activation activation,
const void* activation_parameters,
pthreadpool_t threadpool,
struct nnp_profile* profile);
/**
* @brief Computes output of a fully connected layer from input and kernel matrices.
* @details This function targets training of convolutional neural networks and performs forward propagation.
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
* For minibatch size 1, use nnp_fully_connected_inference for optimal performance.
* @param batch_size The number of vectors on the input and output of the fully connected layer.
* @param input_channels The number of channels (AKA features, dimensions) in the input matrix.
* @param output_channels The number of channels (AKA features, dimensions) in the output matrix.
* @param[in] input A 2D matrix input[batch_size][input_channels].
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels].
* @param[out] output A 2D matrix output[batch_size][output_channels].
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
*/
enum nnp_status nnp_fully_connected_output(
size_t batch_size,
size_t input_channels,
size_t output_channels,
const float input[],
const float kernel[],
float output[],
pthreadpool_t threadpool,
struct nnp_profile* profile);
/**
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
* @param[in] input A 1D array input[input_channels] of FP32 elements.
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP32 elements.
* @param[out] output A 1D array output[output_channels] of FP32 elements.
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
*/
enum nnp_status nnp_fully_connected_inference(
size_t input_channels,
size_t output_channels,
const float* input,
const float* kernel,
float* output,
pthreadpool_t threadpool);
/**
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
* @param[in] input A 1D array input[input_channels] of FP32 elements.
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP16 (ARM alternative format) elements.
* @param[out] output A 1D array output[output_channels] of FP32 elements.
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
*/
enum nnp_status nnp_fully_connected_inference_f16f32(
size_t input_channels,
size_t output_channels,
const float* input,
const void* kernel,
float* output,
pthreadpool_t threadpool);
/**
* @brief Computes output of a max-pooling layer for an input tensor.
* @details This function targets both prediction and training of convolutional neural networks and performs forward
* propagation. Is is optimized for both large and small minibatch sizes.
* @param batch_size The number of images on the input and output of the max-pooling layer.
* @param channels The number of channels (AKA features, dimensions) in both input and output images.
* @param input_size Size of input images, excluding implicit zero-padding.
* @param input_padding Implicit padding of input images. The padding pixels are ignored by the pooling filter, but
* affect the output size.
* @param pooling_size Size of the pooling filter. Only 2x2 filter are currently supported.
* @param pooling_stride Stride of the pooling filter. Only 2x2 strides are currently supported.
* @param[in] input A 4D tensor input[batch_size][channels][input_size.height][input_size.width].
* @param[out] output A 4D tensor output[batch_size][channels][output_size.height][output_size.width] where
* output_size.height = ceil(
* (input_padding.top + input_size.height + input_padding.bottom - pooling_size.height) /
* pooling_stride.height) + 1
* output_size.width = ceil(
* (input_padding.left + input_size.width + input_padding.right - pooling_size.width) /
* pooling_stride.width) + 1
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
*/
enum nnp_status nnp_max_pooling_output(
size_t batch_size,
size_t channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size pooling_size,
struct nnp_size pooling_stride,
const float input[],
float output[],
pthreadpool_t threadpool);
/**
* @brief Computes output of a softmax layer for an input matrix.
* @details This function targets both prediction and training of convolutional neural networks and performs forward
* propagation. Is is optimized for both large and small minibatch sizes.
* @param batch_size The number of vectors on the input and output of the softmax layer.
* @param channels The number of channels (AKA features, dimensions) in both input and output vectors.
* @param[in] input A 2D matrix input[batch_size][channels].
* @param[out] output A 2D matrix output[batch_size][channels].
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
*/
enum nnp_status nnp_softmax_output(
size_t batch_size,
size_t channels,
const float input[],
float output[],
pthreadpool_t threadpool);
/**
* @brief Computes output of a rectified linear unit (ReLU) layer for an input matrix.
* @details This function targets both prediction and training of convolutional neural networks and performs forward
* propagation. Is is optimized for both large and small minibatch sizes.
* @param batch_size The number of vectors on the input and output of the ReLU layer.
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
* @param[in] input A 2D matrix input[batch_size][channels].
* @param[out] output A 2D matrix output[batch_size][channels].
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
*/
enum nnp_status nnp_relu_output(
size_t batch_size,
size_t channels,
const float input[],
float output[],
float negative_slope,
pthreadpool_t threadpool);
/**
* @brief Computes gradient of input of a rectified linear unit (ReLU) layer from gradient of output and input matrices.
* @details This function targets training of convolutional neural networks and performs backward propagation.
* Is is optimized for both large and small minibatch sizes.
* @param batch_size The number of vectors on the input and output of the ReLU layer.
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
* @param[in] input A 2D matrix input[batch_size][channels].
* @param[out] output A 2D matrix output[batch_size][channels].
* @param threadpool A thread pool for parallelization of the computation.
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
*/
enum nnp_status nnp_relu_input_gradient(
size_t batch_size,
size_t channels,
const float grad_output[],
const float input[],
float grad_input[],
float negative_slope,
pthreadpool_t threadpool);
#ifdef __cplusplus
} /* extern "C" */
#endif
#ifdef __cplusplus
// Backward compatible implementations for nnp_convolution_*, if we are in C++
// mode.
inline enum nnp_status nnp_convolution_output(
enum nnp_convolution_algorithm algorithm,
size_t batch_size,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
const float input[],
const float kernel[],
const float bias[],
float output[],
pthreadpool_t threadpool,
struct nnp_profile* profile)
{
return nnp_convolution_output(
algorithm,
batch_size, input_channels, output_channels,
input_size, input_padding, kernel_size,
input, kernel, bias, output,
NULL, NULL,
nnp_activation_identity, NULL, threadpool, profile);
}
inline enum nnp_status nnp_convolution_input_gradient(
enum nnp_convolution_algorithm algorithm,
size_t batch_size,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
const float grad_output[],
const float kernel[],
float grad_input[],
pthreadpool_t threadpool,
struct nnp_profile* profile)
{
return nnp_convolution_input_gradient(
algorithm,
batch_size, input_channels, output_channels,
input_size, input_padding, kernel_size,
grad_output, kernel, grad_input,
NULL, NULL,
nnp_activation_identity, NULL, threadpool, profile);
}
inline enum nnp_status nnp_convolution_kernel_gradient(
enum nnp_convolution_algorithm algorithm,
size_t batch_size,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
const float input[],
const float grad_output[],
float grad_kernel[],
pthreadpool_t threadpool,
struct nnp_profile* profile)
{
return nnp_convolution_kernel_gradient(
algorithm,
batch_size, input_channels, output_channels,
input_size, input_padding, kernel_size,
input, grad_output, grad_kernel,
NULL, NULL,
nnp_activation_identity, NULL, threadpool, profile);
}
inline enum nnp_status nnp_convolution_inference(
enum nnp_convolution_algorithm algorithm,
enum nnp_convolution_transform_strategy transform_strategy,
size_t input_channels,
size_t output_channels,
struct nnp_size input_size,
struct nnp_padding input_padding,
struct nnp_size kernel_size,
struct nnp_size output_subsampling,
const float input[],
const float kernel[],
const float bias[],
float output[],
pthreadpool_t threadpool,
struct nnp_profile* profile) {
return nnp_convolution_inference(
algorithm, transform_strategy,
input_channels, output_channels,
input_size, input_padding, kernel_size, output_subsampling,
input, kernel, bias, output, NULL, NULL,
nnp_activation_identity, NULL,
threadpool, profile);
}
#endif // __cplusplus
|