jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# mypy: allow-untyped-defs
import dataclasses
import inspect
import sys
import warnings
from collections.abc import Iterable, Iterator
from typing import Any, Callable, Union
import torch
import torch.utils._pytree as pytree
from torch import _C, _utils_internal
from torch._ops import OpOverload
def warn_deploy(stacklevel=3):
warnings.warn(
"Python torch.library APIs do nothing under torch::deploy (multipy). "
"Please instead use C++ custom operator registration APIs.",
RuntimeWarning,
stacklevel=stacklevel,
)
@dataclasses.dataclass
class Kernel:
"""Models a (function, source location)"""
func: Callable
source: str
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
class RegistrationHandle:
"""Does something when someone calls .destroy() on it"""
def __init__(self, on_destroy: Callable):
self._on_destroy = on_destroy
def destroy(self) -> None:
self._on_destroy()
def get_source(stacklevel: int) -> str:
"""Get a string that represents the caller.
Example: "/path/to/foo.py:42"
Use stacklevel=1 to get the caller's source
Use stacklevel=2 to get the caller's caller's source
etc.
"""
frame = inspect.getframeinfo(sys._getframe(stacklevel))
source = f"{frame.filename}:{frame.lineno}"
return source
def parse_namespace(qualname: str) -> tuple[str, str]:
splits = qualname.split("::")
if len(splits) != 2:
raise ValueError(
f"Expected `qualname` to be of the form "
f'"namespace::name", but got {qualname}. '
f"The qualname passed to the torch.library APIs must consist "
f"of a namespace and a name, e.g. aten::sin"
)
return splits[0], splits[1]
def lookup_op(qualname: str) -> OpOverload:
namespace, name = parse_namespace(qualname)
if "." in name:
name, overload = name.split(".")
else:
overload = "default"
ns = getattr(torch.ops, namespace)
packet = getattr(ns, name)
return getattr(packet, overload)
def is_builtin(op: OpOverload) -> bool:
assert isinstance(op, OpOverload)
return op.namespace in {"aten", "prim", "prims"}
def is_functional_schema(schema: Any) -> bool:
"""Check if the schema is functional.
An operator is functional if:
- it does not mutate any of its inputs
- it does not return a view on any of its inputs
- it has at least one return
"""
def is_functional(schema):
if schema.is_mutable:
return False
rets = schema.returns
is_non_mutating_view = len(rets) > 0 and any(
r.alias_info is not None and not r.alias_info.is_write for r in rets
)
if is_non_mutating_view:
return False
if not schema.returns:
return False
return True
if isinstance(schema, torch._C.FunctionSchema):
return is_functional(schema)
# Lazy import because not all PyTorch builds have torchgen
from torchgen.model import FunctionSchema
if isinstance(schema, str):
schema = FunctionSchema.parse(schema)
assert isinstance(schema, FunctionSchema)
return is_functional(schema)
# should be torch._C.JitType but that annotation is busted
def is_tensorlist_like_type(typ: Any) -> bool:
return (
typ == _C.ListType(_C.TensorType.get())
or typ == _C.ListType(_C.OptionalType(_C.TensorType.get()))
or typ == _C.OptionalType(_C.ListType(_C.TensorType.get()))
or typ == _C.OptionalType(_C.ListType(_C.OptionalType(_C.TensorType.get())))
)
# should be torch._C.JitType but that annotation is busted
def is_tensor_like_type(typ: Any) -> bool:
return typ == _C.TensorType.get() or typ == _C.OptionalType(_C.TensorType.get())
def mutates_and_returns_first_arg(op: OpOverload):
"""Check if an op is an inplace aten op, i.e. it mutates and returns the first arg.
TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this,
but not all PyTorch builds have torchgen (due to the yaml dependency being weird).
Figure this out.
Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a)
"""
if op.namespace != "aten":
return False
schema = op._schema
if not len(schema.returns) == 1:
return False
if schema.returns[0].alias_info is None:
return False
alias_set = schema.returns[0].alias_info.after_set
if len(alias_set) != 1:
return False
loc = next(iter(alias_set))
if len(schema.arguments) < 1:
return False
first_arg = schema.arguments[0]
if first_arg.alias_info is None:
return False
if not first_arg.alias_info.is_write:
return False
alias_set = first_arg.alias_info.after_set
if len(alias_set) != 1:
return False
if loc != next(iter(alias_set)):
return False
for arg in schema.arguments[1:]:
if arg.alias_info is not None:
return False
return True
def fill_defaults(schema, args, kwargs):
new_args = []
new_kwargs = {}
for i in range(len(schema.arguments)):
info = schema.arguments[i]
if info.kwarg_only:
if info.name in kwargs:
new_kwargs[info.name] = kwargs[info.name]
else:
new_kwargs[info.name] = info.default_value
else:
if i < len(args):
new_args.append(args[i])
else:
new_args.append(info.default_value)
return tuple(new_args), new_kwargs
def zip_schema(
schema: _C.FunctionSchema, args: tuple[Any, ...], kwargs: dict[str, Any]
) -> Iterable[tuple[_C.Argument, Any]]:
"""zips schema.arguments and (args, kwargs) together.
Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload:
that is, (args, kwargs) must be bindable to the schema (args, kwargs).
"""
assert len(schema.arguments) >= len(args) + len(kwargs)
for i in range(len(schema.arguments)):
info = schema.arguments[i]
if info.kwarg_only:
if info.name in kwargs:
yield info, kwargs[info.name]
continue
if i >= len(args):
if not info.kwarg_only and info.name in kwargs:
yield info, kwargs[info.name]
# args that are equal to their default values are not populated
# if they are followed by args that are equal to their defaults.
# Skip these.
continue
yield info, args[i]
return
def hop_schema_from_fx_node(node):
from torchgen.gen_schema_utils import FunctionSchemaGen
hop = node.target
if not isinstance(hop, torch._ops.HigherOrderOperator):
raise RuntimeError("fx_node's target must be a hop.")
def _collect_example_val(node):
meta_val = node.meta.get("val", None)
if meta_val is None:
assert node.op == "get_attr"
meta_val = getattr(node.graph.owning_module, node.target)
return meta_val
example_inputs = []
for arg in node.args:
if isinstance(arg, (torch.fx.Node, torch.fx.node.Node)):
example_inputs.append(_collect_example_val(arg))
elif isinstance(
arg, (torch.fx.immutable_collections.immutable_list, list, tuple)
):
example_inputs.append([_collect_example_val(x) for x in arg])
else:
raise RuntimeError(f"Unsupported arg type {type(arg)}")
# Bound the arguments to make sure number of inputs are correct
bound_args: inspect.BoundArguments = inspect.signature(hop.__call__).bind(
*example_inputs
)
# We treat example_output as a single value in return. This is to differentiate 1. return a single val
# vs 2. return a tuple with one element.
example_output = _collect_example_val(node)
return FunctionSchemaGen.from_example(
hop._name, tuple(bound_args.arguments.items()), (list(example_output),)
)
def can_generate_trivial_fake_impl(op: OpOverload) -> bool:
assert isinstance(op, OpOverload)
if is_builtin(op):
# We control the built-ins. These may (in rare cases)
# do input metadata mutation (which we have banned on custom ops)
return False
schema = op._schema
# It's suspicious if the op is not mutable but returns nothing, so we return False out of an abundance of caution
if not schema.is_mutable:
return False
if len(schema.returns) > 0:
return False
# If the op returns nothing, then it has a trivial fake impl.
return True
def requires_set_python_module() -> bool:
"""If an op was defined in C++ and extended from Python using the
torch.library APIs, returns if we require that there have been a
m.set_python_module("mylib.ops") call from C++ that associates
the C++ op with a python module.
"""
return getattr(_utils_internal, "REQUIRES_SET_PYTHON_MODULE", True)
def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs):
assert isinstance(curr_mode, torch.utils._python_dispatch.TorchDispatchMode)
args_flattened, _ = torch.utils._pytree.tree_flatten((args, kwargs.values()))
# TODO: need to double check the semantics of the "types" argument to torch_dispatch.
# It's generated in PyInterpreter.cpp, but seems to be generated in two places,
# where in one case we only include tensors with the python key, and in another
# we include **all** tensors.
overload_types = [
type(a)
for a in args_flattened
if isinstance(a, torch.Tensor)
and torch._C._dispatch_keys(a).has(torch._C.DispatchKey.Python)
]
# TODO: check that I got these args correct (in C++, we pass in "0000"??)
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
def has_kwarg_only_args(schema: _C.FunctionSchema):
return any(a.kwarg_only for a in schema.arguments)
def has_kwarg_only_tensors(schema: _C.FunctionSchema):
for a in schema.arguments:
if not (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type)):
continue
if not a.kwarg_only:
continue
return True
return False
def has_tensor_arg(schema: _C.FunctionSchema) -> bool:
"""
Given a schema, returns True if the schema has a Tensor arg.
A Tensor arg is any arg with a type annotation that might involve Tensor.
"""
return any(
(is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type))
for a in schema.arguments
)
def get_device_arg_index(schema: _C.FunctionSchema) -> Union[int, None]:
"""
Given a schema, returns the id of the `device: torch.device` argument.
If it does not exist, returns None.
"""
for index, arg in enumerate(schema.arguments):
if arg.type is _C.DeviceObjType.get() and arg.name == "device":
return index
return None
def iter_tensors(
args: tuple[Any], kwargs: dict[str, Any], allowed_nesting: int = 1
) -> Iterator[torch.Tensor]:
def check(arg):
if isinstance(arg, torch.Tensor):
yield arg
elif allowed_nesting > 0 and isinstance(arg, (tuple, list)):
yield from iter_tensors(tuple(arg), {}, allowed_nesting - 1)
for arg in args:
yield from check(arg)
for kwarg in kwargs.values():
yield from check(kwarg)
def check_aliasing_constraint(name, prev, result, get_module=lambda: "???"):
"""
custom operators' outputs must not alias any inputs or other outputs.
"""
storages = {id(t.untyped_storage()) for t in prev if isinstance(t, torch.Tensor)}
tuple_result = result
if not isinstance(result, tuple):
tuple_result = (result,)
for tensor in iter_tensors(tuple_result, {}):
key = id(tensor.untyped_storage())
if id(tensor.untyped_storage()) in storages:
raise RuntimeError(
f"{name} (with implementation in {get_module()}): "
f"The output of this custom operator (1) must not "
f"also be an input to this custom operator and "
f"(2) may not alias any inputs to this custom operator "
f"or other returns. "
f"The most common way to trigger this error is if "
f"we have y = custom_op(x) and y and x are the same Tensor. "
f"Please instead return a clone of the offending output "
f"tensor(s) (e.g. return x.clone()) or refactor the custom "
f"operator to not return y."
)
storages.add(key)
class MutationChecker:
"""
Check if an operator mutated its arguments.
Usage:
checker = MutationChecker(op, flat_args, args_spec)
op(*args, **kwargs)
checker.check()
"""
def __init__(self, op, flat_args, args_spec):
self.op = op
self.args_spec = args_spec
self.flat_args = flat_args
self.real_pre_hashes = [
hash_tensor(a) if isinstance(a, torch.Tensor) else None for a in flat_args
]
def check(self):
real_post_hashes = [
hash_tensor(a) if isinstance(a, torch.Tensor) else None
for a in self.flat_args
]
was_mutated = [
not torch.equal(pre, post)
and not (pre.isnan().all() and post.isnan().all())
if isinstance(pre, torch.Tensor) and isinstance(post, torch.Tensor)
else None
for pre, post in zip(self.real_pre_hashes, real_post_hashes)
]
was_mutated_args, was_mutated_kwargs = pytree.tree_unflatten(
was_mutated, self.args_spec
)
for info, was_mutated in zip_schema(
self.op._schema, was_mutated_args, was_mutated_kwargs
):
def check_one(info, was_mutated):
if info.is_write == was_mutated:
return
raise RuntimeError(
f"{self.op._name}: for argument '{info.name}': the operator's schema "
f"{self.op._schema} specified that "
f"the operator {'mutates' if info.is_write else 'does not mutate'} "
f"the argument, but this seems to be emperically wrong. "
f"Please make the schema and operator behavior consistent. "
f"You can specify that an operator mutates a Tensor by "
f"e.g. changing its schema type from 'Tensor name' to 'Tensor(a!) name'"
f"(use different identifiers (a, b, c, ...) for different Tensors)"
)
if is_tensor_like_type(info.type):
check_one(info, was_mutated)
elif is_tensorlist_like_type(info.type):
was_any_mutated = False if was_mutated is None else any(was_mutated)
check_one(info, was_any_mutated)
def hash_tensor(t: torch.Tensor) -> torch.Tensor:
"""Some inexpensive hash. Used as a quick and dirty indicator for tensor mutation"""
return t.detach().float().mean()
def has_fake_kernel(op: torch._ops.OpOverload) -> bool:
"""If an operator (that stays alive until FakeTensorMode) has a Fake kernel.
Don't use this if the operator decomposes before FakeTensorMode.
"""
if can_generate_trivial_fake_impl(op):
return True
name = op._name
if torch._C._dispatch_has_kernel_for_dispatch_key(
name, "CompositeImplicitAutograd"
):
return True
opdef = torch._library.custom_ops._maybe_get_opdef(name)
if opdef is None:
# the non-torch.library.custom_op path
if torch._C._dispatch_has_kernel_for_dispatch_key(
name, "CompositeExplicitAutograd"
):
return True
entry = torch._library.simple_registry.singleton.find(name)
if entry.fake_impl.kernel is not None:
return True
if torch._C._dispatch_has_kernel_for_dispatch_key(name, "Meta"):
return True
else:
# the torch.library.custom_op path
if opdef._abstract_fn is not None:
return True
return False
def mutated_args_kwargs(schema: _C.FunctionSchema) -> tuple[list[int], list[str]]:
idxs = []
keys = []
for i, info in enumerate(schema.arguments):
if info.alias_info is not None and info.alias_info.is_write:
if info.kwarg_only:
keys.append(info.name)
else:
idxs.append(i)
return idxs, keys