File size: 16,599 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
# mypy: allow-untyped-defs
import dataclasses
import inspect
import sys
import warnings
from collections.abc import Iterable, Iterator
from typing import Any, Callable, Union
import torch
import torch.utils._pytree as pytree
from torch import _C, _utils_internal
from torch._ops import OpOverload
def warn_deploy(stacklevel=3):
warnings.warn(
"Python torch.library APIs do nothing under torch::deploy (multipy). "
"Please instead use C++ custom operator registration APIs.",
RuntimeWarning,
stacklevel=stacklevel,
)
@dataclasses.dataclass
class Kernel:
"""Models a (function, source location)"""
func: Callable
source: str
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
class RegistrationHandle:
"""Does something when someone calls .destroy() on it"""
def __init__(self, on_destroy: Callable):
self._on_destroy = on_destroy
def destroy(self) -> None:
self._on_destroy()
def get_source(stacklevel: int) -> str:
"""Get a string that represents the caller.
Example: "/path/to/foo.py:42"
Use stacklevel=1 to get the caller's source
Use stacklevel=2 to get the caller's caller's source
etc.
"""
frame = inspect.getframeinfo(sys._getframe(stacklevel))
source = f"{frame.filename}:{frame.lineno}"
return source
def parse_namespace(qualname: str) -> tuple[str, str]:
splits = qualname.split("::")
if len(splits) != 2:
raise ValueError(
f"Expected `qualname` to be of the form "
f'"namespace::name", but got {qualname}. '
f"The qualname passed to the torch.library APIs must consist "
f"of a namespace and a name, e.g. aten::sin"
)
return splits[0], splits[1]
def lookup_op(qualname: str) -> OpOverload:
namespace, name = parse_namespace(qualname)
if "." in name:
name, overload = name.split(".")
else:
overload = "default"
ns = getattr(torch.ops, namespace)
packet = getattr(ns, name)
return getattr(packet, overload)
def is_builtin(op: OpOverload) -> bool:
assert isinstance(op, OpOverload)
return op.namespace in {"aten", "prim", "prims"}
def is_functional_schema(schema: Any) -> bool:
"""Check if the schema is functional.
An operator is functional if:
- it does not mutate any of its inputs
- it does not return a view on any of its inputs
- it has at least one return
"""
def is_functional(schema):
if schema.is_mutable:
return False
rets = schema.returns
is_non_mutating_view = len(rets) > 0 and any(
r.alias_info is not None and not r.alias_info.is_write for r in rets
)
if is_non_mutating_view:
return False
if not schema.returns:
return False
return True
if isinstance(schema, torch._C.FunctionSchema):
return is_functional(schema)
# Lazy import because not all PyTorch builds have torchgen
from torchgen.model import FunctionSchema
if isinstance(schema, str):
schema = FunctionSchema.parse(schema)
assert isinstance(schema, FunctionSchema)
return is_functional(schema)
# should be torch._C.JitType but that annotation is busted
def is_tensorlist_like_type(typ: Any) -> bool:
return (
typ == _C.ListType(_C.TensorType.get())
or typ == _C.ListType(_C.OptionalType(_C.TensorType.get()))
or typ == _C.OptionalType(_C.ListType(_C.TensorType.get()))
or typ == _C.OptionalType(_C.ListType(_C.OptionalType(_C.TensorType.get())))
)
# should be torch._C.JitType but that annotation is busted
def is_tensor_like_type(typ: Any) -> bool:
return typ == _C.TensorType.get() or typ == _C.OptionalType(_C.TensorType.get())
def mutates_and_returns_first_arg(op: OpOverload):
"""Check if an op is an inplace aten op, i.e. it mutates and returns the first arg.
TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this,
but not all PyTorch builds have torchgen (due to the yaml dependency being weird).
Figure this out.
Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a)
"""
if op.namespace != "aten":
return False
schema = op._schema
if not len(schema.returns) == 1:
return False
if schema.returns[0].alias_info is None:
return False
alias_set = schema.returns[0].alias_info.after_set
if len(alias_set) != 1:
return False
loc = next(iter(alias_set))
if len(schema.arguments) < 1:
return False
first_arg = schema.arguments[0]
if first_arg.alias_info is None:
return False
if not first_arg.alias_info.is_write:
return False
alias_set = first_arg.alias_info.after_set
if len(alias_set) != 1:
return False
if loc != next(iter(alias_set)):
return False
for arg in schema.arguments[1:]:
if arg.alias_info is not None:
return False
return True
def fill_defaults(schema, args, kwargs):
new_args = []
new_kwargs = {}
for i in range(len(schema.arguments)):
info = schema.arguments[i]
if info.kwarg_only:
if info.name in kwargs:
new_kwargs[info.name] = kwargs[info.name]
else:
new_kwargs[info.name] = info.default_value
else:
if i < len(args):
new_args.append(args[i])
else:
new_args.append(info.default_value)
return tuple(new_args), new_kwargs
def zip_schema(
schema: _C.FunctionSchema, args: tuple[Any, ...], kwargs: dict[str, Any]
) -> Iterable[tuple[_C.Argument, Any]]:
"""zips schema.arguments and (args, kwargs) together.
Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload:
that is, (args, kwargs) must be bindable to the schema (args, kwargs).
"""
assert len(schema.arguments) >= len(args) + len(kwargs)
for i in range(len(schema.arguments)):
info = schema.arguments[i]
if info.kwarg_only:
if info.name in kwargs:
yield info, kwargs[info.name]
continue
if i >= len(args):
if not info.kwarg_only and info.name in kwargs:
yield info, kwargs[info.name]
# args that are equal to their default values are not populated
# if they are followed by args that are equal to their defaults.
# Skip these.
continue
yield info, args[i]
return
def hop_schema_from_fx_node(node):
from torchgen.gen_schema_utils import FunctionSchemaGen
hop = node.target
if not isinstance(hop, torch._ops.HigherOrderOperator):
raise RuntimeError("fx_node's target must be a hop.")
def _collect_example_val(node):
meta_val = node.meta.get("val", None)
if meta_val is None:
assert node.op == "get_attr"
meta_val = getattr(node.graph.owning_module, node.target)
return meta_val
example_inputs = []
for arg in node.args:
if isinstance(arg, (torch.fx.Node, torch.fx.node.Node)):
example_inputs.append(_collect_example_val(arg))
elif isinstance(
arg, (torch.fx.immutable_collections.immutable_list, list, tuple)
):
example_inputs.append([_collect_example_val(x) for x in arg])
else:
raise RuntimeError(f"Unsupported arg type {type(arg)}")
# Bound the arguments to make sure number of inputs are correct
bound_args: inspect.BoundArguments = inspect.signature(hop.__call__).bind(
*example_inputs
)
# We treat example_output as a single value in return. This is to differentiate 1. return a single val
# vs 2. return a tuple with one element.
example_output = _collect_example_val(node)
return FunctionSchemaGen.from_example(
hop._name, tuple(bound_args.arguments.items()), (list(example_output),)
)
def can_generate_trivial_fake_impl(op: OpOverload) -> bool:
assert isinstance(op, OpOverload)
if is_builtin(op):
# We control the built-ins. These may (in rare cases)
# do input metadata mutation (which we have banned on custom ops)
return False
schema = op._schema
# It's suspicious if the op is not mutable but returns nothing, so we return False out of an abundance of caution
if not schema.is_mutable:
return False
if len(schema.returns) > 0:
return False
# If the op returns nothing, then it has a trivial fake impl.
return True
def requires_set_python_module() -> bool:
"""If an op was defined in C++ and extended from Python using the
torch.library APIs, returns if we require that there have been a
m.set_python_module("mylib.ops") call from C++ that associates
the C++ op with a python module.
"""
return getattr(_utils_internal, "REQUIRES_SET_PYTHON_MODULE", True)
def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs):
assert isinstance(curr_mode, torch.utils._python_dispatch.TorchDispatchMode)
args_flattened, _ = torch.utils._pytree.tree_flatten((args, kwargs.values()))
# TODO: need to double check the semantics of the "types" argument to torch_dispatch.
# It's generated in PyInterpreter.cpp, but seems to be generated in two places,
# where in one case we only include tensors with the python key, and in another
# we include **all** tensors.
overload_types = [
type(a)
for a in args_flattened
if isinstance(a, torch.Tensor)
and torch._C._dispatch_keys(a).has(torch._C.DispatchKey.Python)
]
# TODO: check that I got these args correct (in C++, we pass in "0000"??)
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
def has_kwarg_only_args(schema: _C.FunctionSchema):
return any(a.kwarg_only for a in schema.arguments)
def has_kwarg_only_tensors(schema: _C.FunctionSchema):
for a in schema.arguments:
if not (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type)):
continue
if not a.kwarg_only:
continue
return True
return False
def has_tensor_arg(schema: _C.FunctionSchema) -> bool:
"""
Given a schema, returns True if the schema has a Tensor arg.
A Tensor arg is any arg with a type annotation that might involve Tensor.
"""
return any(
(is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type))
for a in schema.arguments
)
def get_device_arg_index(schema: _C.FunctionSchema) -> Union[int, None]:
"""
Given a schema, returns the id of the `device: torch.device` argument.
If it does not exist, returns None.
"""
for index, arg in enumerate(schema.arguments):
if arg.type is _C.DeviceObjType.get() and arg.name == "device":
return index
return None
def iter_tensors(
args: tuple[Any], kwargs: dict[str, Any], allowed_nesting: int = 1
) -> Iterator[torch.Tensor]:
def check(arg):
if isinstance(arg, torch.Tensor):
yield arg
elif allowed_nesting > 0 and isinstance(arg, (tuple, list)):
yield from iter_tensors(tuple(arg), {}, allowed_nesting - 1)
for arg in args:
yield from check(arg)
for kwarg in kwargs.values():
yield from check(kwarg)
def check_aliasing_constraint(name, prev, result, get_module=lambda: "???"):
"""
custom operators' outputs must not alias any inputs or other outputs.
"""
storages = {id(t.untyped_storage()) for t in prev if isinstance(t, torch.Tensor)}
tuple_result = result
if not isinstance(result, tuple):
tuple_result = (result,)
for tensor in iter_tensors(tuple_result, {}):
key = id(tensor.untyped_storage())
if id(tensor.untyped_storage()) in storages:
raise RuntimeError(
f"{name} (with implementation in {get_module()}): "
f"The output of this custom operator (1) must not "
f"also be an input to this custom operator and "
f"(2) may not alias any inputs to this custom operator "
f"or other returns. "
f"The most common way to trigger this error is if "
f"we have y = custom_op(x) and y and x are the same Tensor. "
f"Please instead return a clone of the offending output "
f"tensor(s) (e.g. return x.clone()) or refactor the custom "
f"operator to not return y."
)
storages.add(key)
class MutationChecker:
"""
Check if an operator mutated its arguments.
Usage:
checker = MutationChecker(op, flat_args, args_spec)
op(*args, **kwargs)
checker.check()
"""
def __init__(self, op, flat_args, args_spec):
self.op = op
self.args_spec = args_spec
self.flat_args = flat_args
self.real_pre_hashes = [
hash_tensor(a) if isinstance(a, torch.Tensor) else None for a in flat_args
]
def check(self):
real_post_hashes = [
hash_tensor(a) if isinstance(a, torch.Tensor) else None
for a in self.flat_args
]
was_mutated = [
not torch.equal(pre, post)
and not (pre.isnan().all() and post.isnan().all())
if isinstance(pre, torch.Tensor) and isinstance(post, torch.Tensor)
else None
for pre, post in zip(self.real_pre_hashes, real_post_hashes)
]
was_mutated_args, was_mutated_kwargs = pytree.tree_unflatten(
was_mutated, self.args_spec
)
for info, was_mutated in zip_schema(
self.op._schema, was_mutated_args, was_mutated_kwargs
):
def check_one(info, was_mutated):
if info.is_write == was_mutated:
return
raise RuntimeError(
f"{self.op._name}: for argument '{info.name}': the operator's schema "
f"{self.op._schema} specified that "
f"the operator {'mutates' if info.is_write else 'does not mutate'} "
f"the argument, but this seems to be emperically wrong. "
f"Please make the schema and operator behavior consistent. "
f"You can specify that an operator mutates a Tensor by "
f"e.g. changing its schema type from 'Tensor name' to 'Tensor(a!) name'"
f"(use different identifiers (a, b, c, ...) for different Tensors)"
)
if is_tensor_like_type(info.type):
check_one(info, was_mutated)
elif is_tensorlist_like_type(info.type):
was_any_mutated = False if was_mutated is None else any(was_mutated)
check_one(info, was_any_mutated)
def hash_tensor(t: torch.Tensor) -> torch.Tensor:
"""Some inexpensive hash. Used as a quick and dirty indicator for tensor mutation"""
return t.detach().float().mean()
def has_fake_kernel(op: torch._ops.OpOverload) -> bool:
"""If an operator (that stays alive until FakeTensorMode) has a Fake kernel.
Don't use this if the operator decomposes before FakeTensorMode.
"""
if can_generate_trivial_fake_impl(op):
return True
name = op._name
if torch._C._dispatch_has_kernel_for_dispatch_key(
name, "CompositeImplicitAutograd"
):
return True
opdef = torch._library.custom_ops._maybe_get_opdef(name)
if opdef is None:
# the non-torch.library.custom_op path
if torch._C._dispatch_has_kernel_for_dispatch_key(
name, "CompositeExplicitAutograd"
):
return True
entry = torch._library.simple_registry.singleton.find(name)
if entry.fake_impl.kernel is not None:
return True
if torch._C._dispatch_has_kernel_for_dispatch_key(name, "Meta"):
return True
else:
# the torch.library.custom_op path
if opdef._abstract_fn is not None:
return True
return False
def mutated_args_kwargs(schema: _C.FunctionSchema) -> tuple[list[int], list[str]]:
idxs = []
keys = []
for i, info in enumerate(schema.arguments):
if info.alias_info is not None and info.alias_info.is_write:
if info.kwarg_only:
keys.append(info.name)
else:
idxs.append(i)
return idxs, keys
|