File size: 16,599 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# mypy: allow-untyped-defs
import dataclasses
import inspect
import sys
import warnings
from collections.abc import Iterable, Iterator
from typing import Any, Callable, Union

import torch
import torch.utils._pytree as pytree
from torch import _C, _utils_internal
from torch._ops import OpOverload


def warn_deploy(stacklevel=3):
    warnings.warn(
        "Python torch.library APIs do nothing under torch::deploy (multipy). "
        "Please instead use C++ custom operator registration APIs.",
        RuntimeWarning,
        stacklevel=stacklevel,
    )


@dataclasses.dataclass
class Kernel:
    """Models a (function, source location)"""

    func: Callable
    source: str

    def __call__(self, *args, **kwargs):
        return self.func(*args, **kwargs)


class RegistrationHandle:
    """Does something when someone calls .destroy() on it"""

    def __init__(self, on_destroy: Callable):
        self._on_destroy = on_destroy

    def destroy(self) -> None:
        self._on_destroy()


def get_source(stacklevel: int) -> str:
    """Get a string that represents the caller.

    Example: "/path/to/foo.py:42"

    Use stacklevel=1 to get the caller's source
    Use stacklevel=2 to get the caller's caller's source
    etc.
    """
    frame = inspect.getframeinfo(sys._getframe(stacklevel))
    source = f"{frame.filename}:{frame.lineno}"
    return source


def parse_namespace(qualname: str) -> tuple[str, str]:
    splits = qualname.split("::")
    if len(splits) != 2:
        raise ValueError(
            f"Expected `qualname` to be of the form "
            f'"namespace::name", but got {qualname}. '
            f"The qualname passed to the torch.library APIs must consist "
            f"of a namespace and a name, e.g. aten::sin"
        )
    return splits[0], splits[1]


def lookup_op(qualname: str) -> OpOverload:
    namespace, name = parse_namespace(qualname)
    if "." in name:
        name, overload = name.split(".")
    else:
        overload = "default"
    ns = getattr(torch.ops, namespace)
    packet = getattr(ns, name)
    return getattr(packet, overload)


def is_builtin(op: OpOverload) -> bool:
    assert isinstance(op, OpOverload)
    return op.namespace in {"aten", "prim", "prims"}


def is_functional_schema(schema: Any) -> bool:
    """Check if the schema is functional.

    An operator is functional if:
    - it does not mutate any of its inputs
    - it does not return a view on any of its inputs
    - it has at least one return
    """

    def is_functional(schema):
        if schema.is_mutable:
            return False
        rets = schema.returns
        is_non_mutating_view = len(rets) > 0 and any(
            r.alias_info is not None and not r.alias_info.is_write for r in rets
        )
        if is_non_mutating_view:
            return False
        if not schema.returns:
            return False
        return True

    if isinstance(schema, torch._C.FunctionSchema):
        return is_functional(schema)

    # Lazy import because not all PyTorch builds have torchgen
    from torchgen.model import FunctionSchema

    if isinstance(schema, str):
        schema = FunctionSchema.parse(schema)
    assert isinstance(schema, FunctionSchema)
    return is_functional(schema)


# should be torch._C.JitType but that annotation is busted
def is_tensorlist_like_type(typ: Any) -> bool:
    return (
        typ == _C.ListType(_C.TensorType.get())
        or typ == _C.ListType(_C.OptionalType(_C.TensorType.get()))
        or typ == _C.OptionalType(_C.ListType(_C.TensorType.get()))
        or typ == _C.OptionalType(_C.ListType(_C.OptionalType(_C.TensorType.get())))
    )


# should be torch._C.JitType but that annotation is busted
def is_tensor_like_type(typ: Any) -> bool:
    return typ == _C.TensorType.get() or typ == _C.OptionalType(_C.TensorType.get())


def mutates_and_returns_first_arg(op: OpOverload):
    """Check if an op is an inplace aten op, i.e. it mutates and returns the first arg.

    TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this,
    but not all PyTorch builds have torchgen (due to the yaml dependency being weird).
    Figure this out.

    Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a)
    """
    if op.namespace != "aten":
        return False
    schema = op._schema
    if not len(schema.returns) == 1:
        return False
    if schema.returns[0].alias_info is None:
        return False
    alias_set = schema.returns[0].alias_info.after_set
    if len(alias_set) != 1:
        return False
    loc = next(iter(alias_set))
    if len(schema.arguments) < 1:
        return False
    first_arg = schema.arguments[0]
    if first_arg.alias_info is None:
        return False
    if not first_arg.alias_info.is_write:
        return False
    alias_set = first_arg.alias_info.after_set
    if len(alias_set) != 1:
        return False
    if loc != next(iter(alias_set)):
        return False
    for arg in schema.arguments[1:]:
        if arg.alias_info is not None:
            return False
    return True


def fill_defaults(schema, args, kwargs):
    new_args = []
    new_kwargs = {}
    for i in range(len(schema.arguments)):
        info = schema.arguments[i]
        if info.kwarg_only:
            if info.name in kwargs:
                new_kwargs[info.name] = kwargs[info.name]
            else:
                new_kwargs[info.name] = info.default_value
        else:
            if i < len(args):
                new_args.append(args[i])
            else:
                new_args.append(info.default_value)
    return tuple(new_args), new_kwargs


def zip_schema(
    schema: _C.FunctionSchema, args: tuple[Any, ...], kwargs: dict[str, Any]
) -> Iterable[tuple[_C.Argument, Any]]:
    """zips schema.arguments and (args, kwargs) together.

    Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload:
    that is, (args, kwargs) must be bindable to the schema (args, kwargs).
    """
    assert len(schema.arguments) >= len(args) + len(kwargs)
    for i in range(len(schema.arguments)):
        info = schema.arguments[i]
        if info.kwarg_only:
            if info.name in kwargs:
                yield info, kwargs[info.name]
            continue
        if i >= len(args):
            if not info.kwarg_only and info.name in kwargs:
                yield info, kwargs[info.name]
            # args that are equal to their default values are not populated
            # if they are followed by args that are equal to their defaults.
            # Skip these.
            continue
        yield info, args[i]
    return


def hop_schema_from_fx_node(node):
    from torchgen.gen_schema_utils import FunctionSchemaGen

    hop = node.target
    if not isinstance(hop, torch._ops.HigherOrderOperator):
        raise RuntimeError("fx_node's target must be a hop.")

    def _collect_example_val(node):
        meta_val = node.meta.get("val", None)
        if meta_val is None:
            assert node.op == "get_attr"
            meta_val = getattr(node.graph.owning_module, node.target)
        return meta_val

    example_inputs = []
    for arg in node.args:
        if isinstance(arg, (torch.fx.Node, torch.fx.node.Node)):
            example_inputs.append(_collect_example_val(arg))
        elif isinstance(
            arg, (torch.fx.immutable_collections.immutable_list, list, tuple)
        ):
            example_inputs.append([_collect_example_val(x) for x in arg])
        else:
            raise RuntimeError(f"Unsupported arg type {type(arg)}")

    # Bound the arguments to make sure number of inputs are correct
    bound_args: inspect.BoundArguments = inspect.signature(hop.__call__).bind(
        *example_inputs
    )

    # We treat example_output as a single value in return. This is to differentiate 1. return a single val
    # vs 2. return a tuple with one element.
    example_output = _collect_example_val(node)
    return FunctionSchemaGen.from_example(
        hop._name, tuple(bound_args.arguments.items()), (list(example_output),)
    )


def can_generate_trivial_fake_impl(op: OpOverload) -> bool:
    assert isinstance(op, OpOverload)
    if is_builtin(op):
        # We control the built-ins. These may (in rare cases)
        # do input metadata mutation (which we have banned on custom ops)
        return False
    schema = op._schema
    # It's suspicious if the op is not mutable but returns nothing, so we return False out of an abundance of caution
    if not schema.is_mutable:
        return False
    if len(schema.returns) > 0:
        return False
    # If the op returns nothing, then it has a trivial fake impl.
    return True


def requires_set_python_module() -> bool:
    """If an op was defined in C++ and extended from Python using the
    torch.library APIs, returns if we require that there have been a
    m.set_python_module("mylib.ops") call from C++ that associates
    the C++ op with a python module.
    """
    return getattr(_utils_internal, "REQUIRES_SET_PYTHON_MODULE", True)


def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs):
    assert isinstance(curr_mode, torch.utils._python_dispatch.TorchDispatchMode)
    args_flattened, _ = torch.utils._pytree.tree_flatten((args, kwargs.values()))
    # TODO: need to double check the semantics of the "types" argument to torch_dispatch.
    # It's generated in PyInterpreter.cpp, but seems to be generated in two places,
    # where in one case we only include tensors with the python key, and in another
    # we include **all** tensors.
    overload_types = [
        type(a)
        for a in args_flattened
        if isinstance(a, torch.Tensor)
        and torch._C._dispatch_keys(a).has(torch._C.DispatchKey.Python)
    ]
    # TODO: check that I got these args correct (in C++, we pass in "0000"??)

    return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)


def has_kwarg_only_args(schema: _C.FunctionSchema):
    return any(a.kwarg_only for a in schema.arguments)


def has_kwarg_only_tensors(schema: _C.FunctionSchema):
    for a in schema.arguments:
        if not (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type)):
            continue
        if not a.kwarg_only:
            continue
        return True
    return False


def has_tensor_arg(schema: _C.FunctionSchema) -> bool:
    """
    Given a schema, returns True if the schema has a Tensor arg.
    A Tensor arg is any arg with a type annotation that might involve Tensor.
    """
    return any(
        (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type))
        for a in schema.arguments
    )


def get_device_arg_index(schema: _C.FunctionSchema) -> Union[int, None]:
    """
    Given a schema, returns the id of the `device: torch.device` argument.
    If it does not exist, returns None.
    """
    for index, arg in enumerate(schema.arguments):
        if arg.type is _C.DeviceObjType.get() and arg.name == "device":
            return index
    return None


def iter_tensors(
    args: tuple[Any], kwargs: dict[str, Any], allowed_nesting: int = 1
) -> Iterator[torch.Tensor]:
    def check(arg):
        if isinstance(arg, torch.Tensor):
            yield arg
        elif allowed_nesting > 0 and isinstance(arg, (tuple, list)):
            yield from iter_tensors(tuple(arg), {}, allowed_nesting - 1)

    for arg in args:
        yield from check(arg)
    for kwarg in kwargs.values():
        yield from check(kwarg)


def check_aliasing_constraint(name, prev, result, get_module=lambda: "???"):
    """
    custom operators' outputs must not alias any inputs or other outputs.
    """
    storages = {id(t.untyped_storage()) for t in prev if isinstance(t, torch.Tensor)}
    tuple_result = result
    if not isinstance(result, tuple):
        tuple_result = (result,)
    for tensor in iter_tensors(tuple_result, {}):
        key = id(tensor.untyped_storage())
        if id(tensor.untyped_storage()) in storages:
            raise RuntimeError(
                f"{name} (with implementation in {get_module()}): "
                f"The output of this custom operator (1) must not "
                f"also be an input to this custom operator and "
                f"(2) may not alias any inputs to this custom operator "
                f"or other returns. "
                f"The most common way to trigger this error is if "
                f"we have y = custom_op(x) and y and x are the same Tensor. "
                f"Please instead return a clone of the offending output "
                f"tensor(s) (e.g. return x.clone()) or refactor the custom "
                f"operator to not return y."
            )
        storages.add(key)


class MutationChecker:
    """
    Check if an operator mutated its arguments.
    Usage:

    checker = MutationChecker(op, flat_args, args_spec)
    op(*args, **kwargs)
    checker.check()
    """

    def __init__(self, op, flat_args, args_spec):
        self.op = op
        self.args_spec = args_spec
        self.flat_args = flat_args
        self.real_pre_hashes = [
            hash_tensor(a) if isinstance(a, torch.Tensor) else None for a in flat_args
        ]

    def check(self):
        real_post_hashes = [
            hash_tensor(a) if isinstance(a, torch.Tensor) else None
            for a in self.flat_args
        ]
        was_mutated = [
            not torch.equal(pre, post)
            and not (pre.isnan().all() and post.isnan().all())
            if isinstance(pre, torch.Tensor) and isinstance(post, torch.Tensor)
            else None
            for pre, post in zip(self.real_pre_hashes, real_post_hashes)
        ]
        was_mutated_args, was_mutated_kwargs = pytree.tree_unflatten(
            was_mutated, self.args_spec
        )
        for info, was_mutated in zip_schema(
            self.op._schema, was_mutated_args, was_mutated_kwargs
        ):

            def check_one(info, was_mutated):
                if info.is_write == was_mutated:
                    return
                raise RuntimeError(
                    f"{self.op._name}: for argument '{info.name}': the operator's schema "
                    f"{self.op._schema} specified that "
                    f"the operator {'mutates' if info.is_write else 'does not mutate'} "
                    f"the argument, but this seems to be emperically wrong. "
                    f"Please make the schema and operator behavior consistent. "
                    f"You can specify that an operator mutates a Tensor by "
                    f"e.g. changing its schema type from 'Tensor name' to 'Tensor(a!) name'"
                    f"(use different identifiers (a, b, c, ...) for different Tensors)"
                )

            if is_tensor_like_type(info.type):
                check_one(info, was_mutated)
            elif is_tensorlist_like_type(info.type):
                was_any_mutated = False if was_mutated is None else any(was_mutated)
                check_one(info, was_any_mutated)


def hash_tensor(t: torch.Tensor) -> torch.Tensor:
    """Some inexpensive hash. Used as a quick and dirty indicator for tensor mutation"""
    return t.detach().float().mean()


def has_fake_kernel(op: torch._ops.OpOverload) -> bool:
    """If an operator (that stays alive until FakeTensorMode) has a Fake kernel.
    Don't use this if the operator decomposes before FakeTensorMode.
    """
    if can_generate_trivial_fake_impl(op):
        return True
    name = op._name
    if torch._C._dispatch_has_kernel_for_dispatch_key(
        name, "CompositeImplicitAutograd"
    ):
        return True
    opdef = torch._library.custom_ops._maybe_get_opdef(name)
    if opdef is None:
        # the non-torch.library.custom_op path
        if torch._C._dispatch_has_kernel_for_dispatch_key(
            name, "CompositeExplicitAutograd"
        ):
            return True
        entry = torch._library.simple_registry.singleton.find(name)
        if entry.fake_impl.kernel is not None:
            return True
        if torch._C._dispatch_has_kernel_for_dispatch_key(name, "Meta"):
            return True
    else:
        # the torch.library.custom_op path
        if opdef._abstract_fn is not None:
            return True
    return False


def mutated_args_kwargs(schema: _C.FunctionSchema) -> tuple[list[int], list[str]]:
    idxs = []
    keys = []
    for i, info in enumerate(schema.arguments):
        if info.alias_info is not None and info.alias_info.is_write:
            if info.kwarg_only:
                keys.append(info.name)
            else:
                idxs.append(i)
    return idxs, keys