jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# mypy: allow-untyped-defs
"""
This module provides utilities for generating Python bytecode in PyTorch's Dynamo system.
It includes functionality for:
- Constructing bytecode sequences for Python operations
- Managing stack operations and variable tracking
- Handling graph outputs and their conversions
- Supporting different Python versions (3.11+, 3.12+, 3.13+)
- Converting high-level operations to low-level bytecode instructions
- Managing constant loading and attribute access
- Supporting function creation and closure handling
"""
import collections
import dataclasses
import re
import sys
import types
from collections import Counter
from typing import Optional, Union
import torch.nn
from torch.utils._ordered_set import OrderedSet
from . import graph_break_hints, utils
from .bytecode_transformation import (
add_push_null,
add_push_null_call_function_ex,
create_call_function,
create_call_method,
create_dup_top,
create_instruction,
create_load_const,
create_load_method,
create_rot_n,
Instruction,
)
from .exc import IncorrectUsage, unimplemented_v2
from .source import AttrSource, ChainedSource, DictGetItemSource, Source
from .utils import is_safe_constant, rot_n_helper
from .variables.base import ValueMutationExisting, VariableTracker
from .variables.functions import (
ContextlibContextManagerLocalGeneratorObjectVariable,
LocalGeneratorObjectVariable,
)
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
NumpyNdarrayVariable,
SymNodeVariable,
TensorVariable,
UnspecializedPythonVariable,
)
from .variables.torch_function import TensorWithTFOverrideVariable
@dataclasses.dataclass
class GraphOutputEntry:
index: int
variable: VariableTracker
class PyCodegen:
"""
Helper class uses for constructing Python bytecode
"""
def __init__(
self,
tx=None,
root: Optional[torch.nn.Module] = None,
graph_output_var: Optional[str] = None,
tempvars=None,
overridden_sources=None,
) -> None:
self.root = root
self.top_of_stack: Optional[Union[VariableTracker, Source]] = None
self.uses: Counter[VariableTracker] = collections.Counter()
self.graph_outputs: dict[int, GraphOutputEntry] = {}
self._output: list[Instruction] = []
# This determines which VariableTracker/Source should be stored as
# locals, and maps the VariableTracker/Source to the local variable
# name. Note that it could map to None initially, in which case we'll
# overwrite it to map to real temporary names via `add_cache`.
self.tempvars = tempvars or {}
self.tx = tx
self.graph_output_var = graph_output_var
self.code_options = self.tx.output.code_options
self.cell_and_freevars = self.tx.cell_and_freevars
self.new_var = self.tx.output.new_var
self.value_from_source: bool = True
# This serves as a way for codegen to use a different source; we need
# this because sometimes we can't easily modify the original source
# without affecting other components, e.g., guards.
self.overridden_sources: dict[Source, Source] = overridden_sources or {}
def restore_stack(self, stack_values, *, value_from_source=True):
prev = self.value_from_source
self.value_from_source &= value_from_source
try:
self.foreach(stack_values)
finally:
self.value_from_source = prev
def graph_output_vars(self):
return [x.variable for x in self.graph_outputs.values()]
def call_reconstruct(self, value):
res = value.reconstruct(self)
assert res is None, f"reconstruct!=None {value}"
def add_push_null(self, gen_fn, call_function_ex=False):
"""
`gen_fn` generates instructions via PyCodegen methods
that push a single callable to the stack.
`add_push_null` pushes a NULL to the stack before or after the
instructions generated by `gen_fn`, depending on Python version.
Will attempt to use the NULL push bit for instructions
with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR).
"""
old_len = len(self._output)
if sys.version_info < (3, 13):
# gen_fn may DUP_TOP instead if TOS is not cleared.
# Will cause problems since NULL will be pushed right
# before the generated instructions in <= 3.12
self.clear_tos()
gen_fn()
# inplace modify self._output
added_insts = self._output[old_len:]
del self._output[old_len:]
if call_function_ex:
self._output.extend(add_push_null_call_function_ex(added_insts))
else:
self._output.extend(add_push_null(added_insts))
if sys.version_info >= (3, 13):
# NULL will be at top of stack
self.clear_tos()
def __call__(self, value, allow_cache=True):
"""
Generate code such that top-of-stack (TOS) is set to value.
`allow_cache` controls the behavior in the following manner. `value` can
either be a VariableTracker or a Source.
If `value` is a `Source`, `allow_cache` must be True (invariant asserted
below). If the source was reconstructed earlier, we will reuse the
generated code by loading from top of stack or tempvars.
If `value` is a `VariableTracker`, we have the following cases:
1) `allow_cache=True`
a) If the value.source is not None, we will emit the code based on
`value.source` to handle aliasing.
b) If value.source is None (example reconstructing a local list
returned by the compiled function), we will reconstruct the variable
tracker (w/o any source) to emit bytecode that generates a new
python object.
In both cases of value.source being None or not, if the value was
reconstructed earlier, we will reuse the generated code by loading from
top of stack or tempvars.
2) `allow_cache=False` - This is a special case (allow_cache defaults to
True).
a) If the value.source is not None, we reconstruct the variable
tracker and emit a new python object. You might wonder what about
aliasing? The place where we use this config also has the followup
code where the original python object is assigned to this new python
value to handle aliasing (check side_effects.py and search for
allow_cache=False).
b) If value.source is None, this is not allowed. TODO - assert this.
Notable effects:
1. `self.top_of_stack` will be set to `value`, if we don't codegen
`value` based on source.
2. `self.uses[value]` will increment, if we don't codegen `value` based
on source or cache/top-of-stack reuse; in other words, if we codegen
as if `value` is modelling some brand new python value.
"""
if isinstance(value, Source):
# If the source needs to be overridden, use the new one.
source = self.overridden_sources.get(value, value)
assert allow_cache is True, "allow_cache must be True for Source"
if self.top_of_stack is value:
self._output.append(create_dup_top())
return
if self.tempvars.get(source) is not None:
self._output.append(self.create_load(self.tempvars[source]))
self.top_of_stack = source
return
try:
self.call_reconstruct(source)
except NotImplementedError:
unimplemented_v2(
gb_type="Reconstruction failure: source.reconstruct not implemented",
context=str(source),
explanation=f"Dynamo has no bytecode reconstruction implemented for {type(source)} variable {source}.",
hints=[*graph_break_hints.DYNAMO_BUG],
)
self._output.append(create_dup_top())
self.add_cache(source)
self.top_of_stack = source
return
assert isinstance(value, VariableTracker)
output = self._output
graph_outputs = self.graph_outputs
if allow_cache:
if self.top_of_stack is value:
output.append(create_dup_top())
return
if self.tempvars.get(value) is not None:
output.append(self.create_load(self.tempvars[value]))
self.top_of_stack = value
return
if value.is_realized() and isinstance(
value, ContextlibContextManagerLocalGeneratorObjectVariable
):
raise IncorrectUsage(
"NYI: Returning a @contextmanager object from a torch.compile function"
)
# Dynamo normally prefers codegen from source to account for aliasing.
if (
value.source is not None
and allow_cache
and not (
value.is_realized() and isinstance(value, LocalGeneratorObjectVariable)
)
):
# There's a corner case for export: for instance, if the computation
# graph is just identity on an input tensor, Dynamo would just emit
# a `LOAD_FAST` from the input source, rather than generating an
# identity FX graph.
#
# However, export wants to maximize graph capture; in the case
# above, export _wants to_ obtain an identity FX graph (despite it
# appears unnecessarily expensive for `torch.compile`), so we have
# the following option to override Dynamo's preference for codegen
# from source. Morever, this option applies recursively, for cases
# like input tensor being returned in a new dictionary.
#
# And why the `ValueMutationExisting` check? Not sure, so leaving it
# to keep the old behavior, as when `value_from_source` was
# introduced. TODO sort out the invariants among side effect,
# codegen and export.
if (
isinstance(value.mutation_type, ValueMutationExisting)
or self.value_from_source
):
return self(value.source)
if value.is_python_constant() and is_safe_constant(value.as_python_constant()):
output.append(self.create_load_const(value.as_python_constant()))
elif isinstance(value, TensorWithTFOverrideVariable):
graph_outputs_key = self.add_graph_output(value)
self.add_push_null(
lambda: self.load_import_from(utils.__name__, "to_subclass")
)
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(
self.create_load_global(
value.global_mangled_class_name(self.tx), add=True
)
)
output.extend(create_call_function(2, False))
elif (
isinstance(value, SymNodeVariable)
and value.python_type() == float
and not self.tx.export
):
# This is a little unusual; force the output convention to be a
# Tensor here. Don't do this for export because this is
# apparently load bearing for export tests (but I am a bit
# doubtful it actually works in the real world)
# NB: It works to add_graph_output on a computed expression
# as_tensor here, because we memoize as_tensor calls on
# SymNodeVariable!
graph_outputs_key = self.add_graph_output(
value.as_tensor(self.tx, torch.float64)
)
def gen_fn():
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(self.create_load_attr("item"))
self.add_push_null(gen_fn)
output.extend(create_call_function(0, False))
elif isinstance(
value,
(
TensorVariable,
SymNodeVariable,
UnspecializedPythonVariable,
NumpyNdarrayVariable,
),
):
graph_outputs_key = self.add_graph_output(value)
if isinstance(value, NumpyNdarrayVariable):
self.add_push_null(
lambda: self.load_import_from(utils.__name__, "to_numpy_helper")
)
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.extend(create_call_function(1, False))
elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:
def gen_fn():
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(self.create_load_attr("item"))
self.add_push_null(gen_fn)
output.extend(create_call_function(0, False))
else:
self.load_graph_output(graph_outputs[graph_outputs_key].index)
elif isinstance(value, NNModuleVariable):
parts = value.module_key.split(".")
if parts[0] in self.code_options["co_varnames"]:
output.append(self.create_load(parts[0]))
parts = parts[1:]
else:
assert self.root is not None
output.append(self.create_load_const_unchecked(self.root))
for part in parts:
output.append(self.create_load_attr(part))
else:
self.uses[value] += 1
try:
self.call_reconstruct(value)
except NotImplementedError:
unimplemented_v2(
gb_type="Reconstruction failure",
context=str(value),
explanation=f"Dynamo has no bytecode reconstruction implemented for sourceless variable {value}.",
hints=[
"If Dynamo attempting to trace a return statement and your code is attempting to return a variable "
"that Dynamo cannot reconstruct, then remove it from the return statement.",
*graph_break_hints.CAUSED_BY_EARLIER_GRAPH_BREAK,
"Report an issue to PyTorch if you need reconstrtuction support. Note that objects that don't have"
"reconstruction rules may be fundamentally unreconstructable.",
],
)
if allow_cache and value in self.tempvars:
self._output.append(create_dup_top())
self.add_cache(value)
self.top_of_stack = value
def add_graph_output(self, value):
graph_outputs_key = id(value.as_proxy())
if graph_outputs_key not in self.graph_outputs:
self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
len(self.graph_outputs), value
)
return graph_outputs_key
def load_graph_output(self, index):
output = self._output
output.append(self.create_load(self.graph_output_var))
output.append(self.create_load_const(index))
output.append(self.create_binary_subscr())
def add_cache(self, value):
var = self.new_var()
self.tempvars[value] = var
self._output.append(self.create_store(var))
def foreach(self, items):
for i in items:
self(i)
def create_binary_subscr(self) -> Instruction:
return create_instruction("BINARY_SUBSCR")
def setup_globally_cached(self, name, value):
"""Store value in a new global"""
name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
f_globals = self.tx.f_globals
if name in f_globals:
assert id(f_globals[name]) == id(value)
else:
f_globals[name] = value
return [self.create_load_global(name, add=True)]
def clear_tos(self):
self.top_of_stack = None
def append_output(self, inst):
assert isinstance(inst, Instruction)
self._output.append(inst)
self.clear_tos()
def extend_output(self, insts):
assert all(isinstance(x, Instruction) for x in insts)
self._output.extend(insts)
self.clear_tos()
def get_instructions(self) -> list[Instruction]:
return self._output
def create_load(self, name) -> Instruction:
assert name in self.code_options["co_varnames"], f"{name} missing"
return create_instruction("LOAD_FAST", argval=name)
def create_load_closure(self, name) -> Instruction:
assert name in self.cell_and_freevars()
inst_name = "LOAD_FAST" if sys.version_info >= (3, 13) else "LOAD_CLOSURE"
return create_instruction(inst_name, argval=name)
def create_load_deref(self, name) -> Instruction:
assert name in self.cell_and_freevars()
return create_instruction("LOAD_DEREF", argval=name)
def create_store(self, name) -> Instruction:
assert name in self.code_options["co_varnames"], f"{name} missing"
return create_instruction("STORE_FAST", argval=name)
def create_store_deref(self, name) -> Instruction:
assert name in self.cell_and_freevars()
return create_instruction("STORE_DEREF", argval=name)
def create_load_global(self, name, add=False) -> Instruction:
if add:
self.tx.output.update_co_names(name)
assert name in self.code_options["co_names"], f"{name} not in co_names"
return create_instruction("LOAD_GLOBAL", argval=name)
def create_load_const(self, value) -> Instruction:
return create_load_const(value)
def create_load_const_unchecked(self, value) -> Instruction:
return create_load_const(value, checked=False)
def load_method(self, name):
self.tx.output.update_co_names(name)
self.append_output(create_load_method(name))
def call_method(self, nargs):
self.extend_output(create_call_method(nargs))
def create_load_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("LOAD_ATTR", argval=name)
def load_attr(self, name):
self.append_output(self.create_load_attr(name))
def create_load_attrs(self, names):
return [self.create_load_attr(name) for name in names.split(".")]
def create_store_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("STORE_ATTR", argval=name)
def store_attr(self, name):
self.append_output(self.create_store_attr(name))
def load_function_name(self, fn_name, push_null, num_on_stack=0):
"""Load the global fn_name on the stack num_on_stack down"""
output = []
if push_null and sys.version_info >= (3, 11):
output.extend(add_push_null(self.create_load_global(fn_name, add=True)))
if num_on_stack > 0:
output.extend(
[
*self.rot_n(num_on_stack + 2),
*self.rot_n(num_on_stack + 2),
]
)
else:
output.extend(
[
self.create_load_global(fn_name, add=True),
*self.rot_n(num_on_stack + 1),
]
)
return output
def rot_n(self, n):
try:
return create_rot_n(n)
except AttributeError:
# desired rotate bytecode doesn't exist, generate equivalent bytecode
return [
create_instruction("BUILD_TUPLE", arg=n),
self.create_load_const_unchecked(rot_n_helper(n)),
*create_rot_n(2),
create_instruction("CALL_FUNCTION_EX", arg=0),
create_instruction("UNPACK_SEQUENCE", arg=n),
]
def pop_null(self):
# POP_TOP doesn't work for null, so we pop nulls by pushing in a
# nop function, calling it (which consumes the null), and popping the result.
assert sys.version_info >= (3, 11)
return [
self.create_load_const_unchecked(lambda: None),
# 3.13 swapped NULL and callable
*(
(create_instruction("SWAP", arg=2),)
if sys.version_info >= (3, 13)
else ()
),
*create_call_function(0, False),
create_instruction("POP_TOP"),
]
def pop_top(self):
self.append_output(create_instruction("POP_TOP"))
def call_function(self, nargs: int, push_null: bool):
self.extend_output(create_call_function(nargs, push_null=push_null))
def dup_top(self):
self.append_output(create_dup_top())
def store(self, varname):
self.append_output(self.create_store(varname))
def load_deref(self, varname):
self.append_output(self.create_load_deref(varname))
def make_function_with_closure(
self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0
):
freevars = code.co_freevars
assert freevars
output = self._output
def gen_fn():
# Emitting `LOAD_FAST/LOAD_CLOSURE` with names in `co_freevars`
# requires that in the generated bytecode, these cells would keep
# their original local names, which we ensure via
# `CellVariable.local_name`.
for var in freevars:
assert var in self.cell_and_freevars()
output.append(self.create_load_closure(var))
output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
output.append(self.create_load_const(code))
if sys.version_info < (3, 11):
output.append(self.create_load_const(fn_name))
if sys.version_info >= (3, 13):
output.extend(
[
create_instruction("MAKE_FUNCTION"),
create_instruction("SET_FUNCTION_ATTRIBUTE", arg=0x08),
]
)
else:
output.append(create_instruction("MAKE_FUNCTION", arg=0x08))
if push_null and sys.version_info >= (3, 11):
self.add_push_null(gen_fn)
output.extend(self.rot_n(num_on_stack + 2))
output.extend(self.rot_n(num_on_stack + 2))
else:
gen_fn()
output.extend(self.rot_n(num_on_stack + 1))
self.clear_tos()
def create_load_python_module(self, mod) -> Instruction:
"""
Generate a LOAD_GLOBAL instruction to fetch a given python module.
"""
output = self.tx.output
global_scope = output.global_scope
name = re.sub(r"^.*[.]", "", mod.__name__)
if global_scope.get(name, None) is mod:
return self.create_load_global(name, add=True)
prefix = f"___module_{name}"
global_name = self.tx.output.install_global_by_id(prefix, mod)
return self.create_load_global(global_name, add=True)
def mark_source_temp(self, source: Source) -> None:
"""
Mark a source as a temp variable, so that it can be reused.
"""
if source not in self.tempvars:
self.tempvars[source] = None
def make_call_generated_code(self, fn_name: str) -> None:
"""Call the generated code function stored in fn_name"""
self.extend_output(self.load_function_name(fn_name, True))
graphargs = self.tx.output.graphargs
seen_sources: OrderedSet[Source] = OrderedSet()
def collect_temp_source(source):
if source in seen_sources:
# This source is used atleast twice, so it can be reused
self.mark_source_temp(source)
# Dont trace source further. This prevents us from marking too
# many nodes as temp sources.
return
seen_sources.add(source)
if isinstance(source, ChainedSource):
collect_temp_source(source.base)
if isinstance(source, DictGetItemSource) and isinstance(
source.index, Source
):
collect_temp_source(source.index)
# Collect all the sources that are used more than once, so that we can
# generate tmp variables in the generated pre-graph bytecode. This
# essentially implements CSE.
for arg in graphargs:
if arg.source is not None:
collect_temp_source(arg.source)
for arg in graphargs:
if arg.pass_arg_as_tensor:
self.add_push_null(
lambda: self.extend_output(
[
self.create_load_python_module(torch),
self.create_load_attr("_as_tensor_fullprec"),
]
)
)
self.call_reconstruct(arg)
self.extend_output(create_call_function(1, False))
else:
self.call_reconstruct(arg)
self.extend_output(create_call_function(len(graphargs), False))
def load_import_from(self, module_name, object_name) -> None:
source = AttrSource(self.tx.import_source(module_name), object_name)
# Note: This approach is somewhat aggressive because typically, a source is marked
# as a tempvar only when it is used more than once. In this case, we're marking it
# as a tempvar without performing that analysis. However, this is a simple solution,
# and in many cases, load imports are reused multiple times.
self.mark_source_temp(source)
self(source)
def create_call_function_kw(self, nargs, kw_names, push_null) -> list[Instruction]:
if sys.version_info >= (3, 13):
output = create_call_function(nargs, push_null)
assert output[-1].opname == "CALL"
output.insert(-1, self.create_load_const(kw_names))
output[-1] = create_instruction("CALL_KW", arg=nargs)
return output
elif sys.version_info >= (3, 11):
output = create_call_function(nargs, push_null)
if sys.version_info >= (3, 12):
idx = -1
expected_inst = "CALL"
else:
idx = -2
expected_inst = "PRECALL"
assert output[idx].opname == expected_inst
kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
output.insert(idx, kw_names_inst)
return output
return [
self.create_load_const(kw_names),
create_instruction("CALL_FUNCTION_KW", arg=nargs),
]
def create_delete(self, value) -> Instruction:
return create_instruction("DELETE_FAST", argval=value)