File size: 27,348 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# mypy: allow-untyped-defs
"""
This module provides utilities for generating Python bytecode in PyTorch's Dynamo system.
It includes functionality for:
- Constructing bytecode sequences for Python operations
- Managing stack operations and variable tracking
- Handling graph outputs and their conversions
- Supporting different Python versions (3.11+, 3.12+, 3.13+)
- Converting high-level operations to low-level bytecode instructions
- Managing constant loading and attribute access
- Supporting function creation and closure handling
"""
import collections
import dataclasses
import re
import sys
import types
from collections import Counter
from typing import Optional, Union
import torch.nn
from torch.utils._ordered_set import OrderedSet
from . import graph_break_hints, utils
from .bytecode_transformation import (
add_push_null,
add_push_null_call_function_ex,
create_call_function,
create_call_method,
create_dup_top,
create_instruction,
create_load_const,
create_load_method,
create_rot_n,
Instruction,
)
from .exc import IncorrectUsage, unimplemented_v2
from .source import AttrSource, ChainedSource, DictGetItemSource, Source
from .utils import is_safe_constant, rot_n_helper
from .variables.base import ValueMutationExisting, VariableTracker
from .variables.functions import (
ContextlibContextManagerLocalGeneratorObjectVariable,
LocalGeneratorObjectVariable,
)
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
NumpyNdarrayVariable,
SymNodeVariable,
TensorVariable,
UnspecializedPythonVariable,
)
from .variables.torch_function import TensorWithTFOverrideVariable
@dataclasses.dataclass
class GraphOutputEntry:
index: int
variable: VariableTracker
class PyCodegen:
"""
Helper class uses for constructing Python bytecode
"""
def __init__(
self,
tx=None,
root: Optional[torch.nn.Module] = None,
graph_output_var: Optional[str] = None,
tempvars=None,
overridden_sources=None,
) -> None:
self.root = root
self.top_of_stack: Optional[Union[VariableTracker, Source]] = None
self.uses: Counter[VariableTracker] = collections.Counter()
self.graph_outputs: dict[int, GraphOutputEntry] = {}
self._output: list[Instruction] = []
# This determines which VariableTracker/Source should be stored as
# locals, and maps the VariableTracker/Source to the local variable
# name. Note that it could map to None initially, in which case we'll
# overwrite it to map to real temporary names via `add_cache`.
self.tempvars = tempvars or {}
self.tx = tx
self.graph_output_var = graph_output_var
self.code_options = self.tx.output.code_options
self.cell_and_freevars = self.tx.cell_and_freevars
self.new_var = self.tx.output.new_var
self.value_from_source: bool = True
# This serves as a way for codegen to use a different source; we need
# this because sometimes we can't easily modify the original source
# without affecting other components, e.g., guards.
self.overridden_sources: dict[Source, Source] = overridden_sources or {}
def restore_stack(self, stack_values, *, value_from_source=True):
prev = self.value_from_source
self.value_from_source &= value_from_source
try:
self.foreach(stack_values)
finally:
self.value_from_source = prev
def graph_output_vars(self):
return [x.variable for x in self.graph_outputs.values()]
def call_reconstruct(self, value):
res = value.reconstruct(self)
assert res is None, f"reconstruct!=None {value}"
def add_push_null(self, gen_fn, call_function_ex=False):
"""
`gen_fn` generates instructions via PyCodegen methods
that push a single callable to the stack.
`add_push_null` pushes a NULL to the stack before or after the
instructions generated by `gen_fn`, depending on Python version.
Will attempt to use the NULL push bit for instructions
with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR).
"""
old_len = len(self._output)
if sys.version_info < (3, 13):
# gen_fn may DUP_TOP instead if TOS is not cleared.
# Will cause problems since NULL will be pushed right
# before the generated instructions in <= 3.12
self.clear_tos()
gen_fn()
# inplace modify self._output
added_insts = self._output[old_len:]
del self._output[old_len:]
if call_function_ex:
self._output.extend(add_push_null_call_function_ex(added_insts))
else:
self._output.extend(add_push_null(added_insts))
if sys.version_info >= (3, 13):
# NULL will be at top of stack
self.clear_tos()
def __call__(self, value, allow_cache=True):
"""
Generate code such that top-of-stack (TOS) is set to value.
`allow_cache` controls the behavior in the following manner. `value` can
either be a VariableTracker or a Source.
If `value` is a `Source`, `allow_cache` must be True (invariant asserted
below). If the source was reconstructed earlier, we will reuse the
generated code by loading from top of stack or tempvars.
If `value` is a `VariableTracker`, we have the following cases:
1) `allow_cache=True`
a) If the value.source is not None, we will emit the code based on
`value.source` to handle aliasing.
b) If value.source is None (example reconstructing a local list
returned by the compiled function), we will reconstruct the variable
tracker (w/o any source) to emit bytecode that generates a new
python object.
In both cases of value.source being None or not, if the value was
reconstructed earlier, we will reuse the generated code by loading from
top of stack or tempvars.
2) `allow_cache=False` - This is a special case (allow_cache defaults to
True).
a) If the value.source is not None, we reconstruct the variable
tracker and emit a new python object. You might wonder what about
aliasing? The place where we use this config also has the followup
code where the original python object is assigned to this new python
value to handle aliasing (check side_effects.py and search for
allow_cache=False).
b) If value.source is None, this is not allowed. TODO - assert this.
Notable effects:
1. `self.top_of_stack` will be set to `value`, if we don't codegen
`value` based on source.
2. `self.uses[value]` will increment, if we don't codegen `value` based
on source or cache/top-of-stack reuse; in other words, if we codegen
as if `value` is modelling some brand new python value.
"""
if isinstance(value, Source):
# If the source needs to be overridden, use the new one.
source = self.overridden_sources.get(value, value)
assert allow_cache is True, "allow_cache must be True for Source"
if self.top_of_stack is value:
self._output.append(create_dup_top())
return
if self.tempvars.get(source) is not None:
self._output.append(self.create_load(self.tempvars[source]))
self.top_of_stack = source
return
try:
self.call_reconstruct(source)
except NotImplementedError:
unimplemented_v2(
gb_type="Reconstruction failure: source.reconstruct not implemented",
context=str(source),
explanation=f"Dynamo has no bytecode reconstruction implemented for {type(source)} variable {source}.",
hints=[*graph_break_hints.DYNAMO_BUG],
)
self._output.append(create_dup_top())
self.add_cache(source)
self.top_of_stack = source
return
assert isinstance(value, VariableTracker)
output = self._output
graph_outputs = self.graph_outputs
if allow_cache:
if self.top_of_stack is value:
output.append(create_dup_top())
return
if self.tempvars.get(value) is not None:
output.append(self.create_load(self.tempvars[value]))
self.top_of_stack = value
return
if value.is_realized() and isinstance(
value, ContextlibContextManagerLocalGeneratorObjectVariable
):
raise IncorrectUsage(
"NYI: Returning a @contextmanager object from a torch.compile function"
)
# Dynamo normally prefers codegen from source to account for aliasing.
if (
value.source is not None
and allow_cache
and not (
value.is_realized() and isinstance(value, LocalGeneratorObjectVariable)
)
):
# There's a corner case for export: for instance, if the computation
# graph is just identity on an input tensor, Dynamo would just emit
# a `LOAD_FAST` from the input source, rather than generating an
# identity FX graph.
#
# However, export wants to maximize graph capture; in the case
# above, export _wants to_ obtain an identity FX graph (despite it
# appears unnecessarily expensive for `torch.compile`), so we have
# the following option to override Dynamo's preference for codegen
# from source. Morever, this option applies recursively, for cases
# like input tensor being returned in a new dictionary.
#
# And why the `ValueMutationExisting` check? Not sure, so leaving it
# to keep the old behavior, as when `value_from_source` was
# introduced. TODO sort out the invariants among side effect,
# codegen and export.
if (
isinstance(value.mutation_type, ValueMutationExisting)
or self.value_from_source
):
return self(value.source)
if value.is_python_constant() and is_safe_constant(value.as_python_constant()):
output.append(self.create_load_const(value.as_python_constant()))
elif isinstance(value, TensorWithTFOverrideVariable):
graph_outputs_key = self.add_graph_output(value)
self.add_push_null(
lambda: self.load_import_from(utils.__name__, "to_subclass")
)
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(
self.create_load_global(
value.global_mangled_class_name(self.tx), add=True
)
)
output.extend(create_call_function(2, False))
elif (
isinstance(value, SymNodeVariable)
and value.python_type() == float
and not self.tx.export
):
# This is a little unusual; force the output convention to be a
# Tensor here. Don't do this for export because this is
# apparently load bearing for export tests (but I am a bit
# doubtful it actually works in the real world)
# NB: It works to add_graph_output on a computed expression
# as_tensor here, because we memoize as_tensor calls on
# SymNodeVariable!
graph_outputs_key = self.add_graph_output(
value.as_tensor(self.tx, torch.float64)
)
def gen_fn():
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(self.create_load_attr("item"))
self.add_push_null(gen_fn)
output.extend(create_call_function(0, False))
elif isinstance(
value,
(
TensorVariable,
SymNodeVariable,
UnspecializedPythonVariable,
NumpyNdarrayVariable,
),
):
graph_outputs_key = self.add_graph_output(value)
if isinstance(value, NumpyNdarrayVariable):
self.add_push_null(
lambda: self.load_import_from(utils.__name__, "to_numpy_helper")
)
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.extend(create_call_function(1, False))
elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:
def gen_fn():
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(self.create_load_attr("item"))
self.add_push_null(gen_fn)
output.extend(create_call_function(0, False))
else:
self.load_graph_output(graph_outputs[graph_outputs_key].index)
elif isinstance(value, NNModuleVariable):
parts = value.module_key.split(".")
if parts[0] in self.code_options["co_varnames"]:
output.append(self.create_load(parts[0]))
parts = parts[1:]
else:
assert self.root is not None
output.append(self.create_load_const_unchecked(self.root))
for part in parts:
output.append(self.create_load_attr(part))
else:
self.uses[value] += 1
try:
self.call_reconstruct(value)
except NotImplementedError:
unimplemented_v2(
gb_type="Reconstruction failure",
context=str(value),
explanation=f"Dynamo has no bytecode reconstruction implemented for sourceless variable {value}.",
hints=[
"If Dynamo attempting to trace a return statement and your code is attempting to return a variable "
"that Dynamo cannot reconstruct, then remove it from the return statement.",
*graph_break_hints.CAUSED_BY_EARLIER_GRAPH_BREAK,
"Report an issue to PyTorch if you need reconstrtuction support. Note that objects that don't have"
"reconstruction rules may be fundamentally unreconstructable.",
],
)
if allow_cache and value in self.tempvars:
self._output.append(create_dup_top())
self.add_cache(value)
self.top_of_stack = value
def add_graph_output(self, value):
graph_outputs_key = id(value.as_proxy())
if graph_outputs_key not in self.graph_outputs:
self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
len(self.graph_outputs), value
)
return graph_outputs_key
def load_graph_output(self, index):
output = self._output
output.append(self.create_load(self.graph_output_var))
output.append(self.create_load_const(index))
output.append(self.create_binary_subscr())
def add_cache(self, value):
var = self.new_var()
self.tempvars[value] = var
self._output.append(self.create_store(var))
def foreach(self, items):
for i in items:
self(i)
def create_binary_subscr(self) -> Instruction:
return create_instruction("BINARY_SUBSCR")
def setup_globally_cached(self, name, value):
"""Store value in a new global"""
name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
f_globals = self.tx.f_globals
if name in f_globals:
assert id(f_globals[name]) == id(value)
else:
f_globals[name] = value
return [self.create_load_global(name, add=True)]
def clear_tos(self):
self.top_of_stack = None
def append_output(self, inst):
assert isinstance(inst, Instruction)
self._output.append(inst)
self.clear_tos()
def extend_output(self, insts):
assert all(isinstance(x, Instruction) for x in insts)
self._output.extend(insts)
self.clear_tos()
def get_instructions(self) -> list[Instruction]:
return self._output
def create_load(self, name) -> Instruction:
assert name in self.code_options["co_varnames"], f"{name} missing"
return create_instruction("LOAD_FAST", argval=name)
def create_load_closure(self, name) -> Instruction:
assert name in self.cell_and_freevars()
inst_name = "LOAD_FAST" if sys.version_info >= (3, 13) else "LOAD_CLOSURE"
return create_instruction(inst_name, argval=name)
def create_load_deref(self, name) -> Instruction:
assert name in self.cell_and_freevars()
return create_instruction("LOAD_DEREF", argval=name)
def create_store(self, name) -> Instruction:
assert name in self.code_options["co_varnames"], f"{name} missing"
return create_instruction("STORE_FAST", argval=name)
def create_store_deref(self, name) -> Instruction:
assert name in self.cell_and_freevars()
return create_instruction("STORE_DEREF", argval=name)
def create_load_global(self, name, add=False) -> Instruction:
if add:
self.tx.output.update_co_names(name)
assert name in self.code_options["co_names"], f"{name} not in co_names"
return create_instruction("LOAD_GLOBAL", argval=name)
def create_load_const(self, value) -> Instruction:
return create_load_const(value)
def create_load_const_unchecked(self, value) -> Instruction:
return create_load_const(value, checked=False)
def load_method(self, name):
self.tx.output.update_co_names(name)
self.append_output(create_load_method(name))
def call_method(self, nargs):
self.extend_output(create_call_method(nargs))
def create_load_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("LOAD_ATTR", argval=name)
def load_attr(self, name):
self.append_output(self.create_load_attr(name))
def create_load_attrs(self, names):
return [self.create_load_attr(name) for name in names.split(".")]
def create_store_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("STORE_ATTR", argval=name)
def store_attr(self, name):
self.append_output(self.create_store_attr(name))
def load_function_name(self, fn_name, push_null, num_on_stack=0):
"""Load the global fn_name on the stack num_on_stack down"""
output = []
if push_null and sys.version_info >= (3, 11):
output.extend(add_push_null(self.create_load_global(fn_name, add=True)))
if num_on_stack > 0:
output.extend(
[
*self.rot_n(num_on_stack + 2),
*self.rot_n(num_on_stack + 2),
]
)
else:
output.extend(
[
self.create_load_global(fn_name, add=True),
*self.rot_n(num_on_stack + 1),
]
)
return output
def rot_n(self, n):
try:
return create_rot_n(n)
except AttributeError:
# desired rotate bytecode doesn't exist, generate equivalent bytecode
return [
create_instruction("BUILD_TUPLE", arg=n),
self.create_load_const_unchecked(rot_n_helper(n)),
*create_rot_n(2),
create_instruction("CALL_FUNCTION_EX", arg=0),
create_instruction("UNPACK_SEQUENCE", arg=n),
]
def pop_null(self):
# POP_TOP doesn't work for null, so we pop nulls by pushing in a
# nop function, calling it (which consumes the null), and popping the result.
assert sys.version_info >= (3, 11)
return [
self.create_load_const_unchecked(lambda: None),
# 3.13 swapped NULL and callable
*(
(create_instruction("SWAP", arg=2),)
if sys.version_info >= (3, 13)
else ()
),
*create_call_function(0, False),
create_instruction("POP_TOP"),
]
def pop_top(self):
self.append_output(create_instruction("POP_TOP"))
def call_function(self, nargs: int, push_null: bool):
self.extend_output(create_call_function(nargs, push_null=push_null))
def dup_top(self):
self.append_output(create_dup_top())
def store(self, varname):
self.append_output(self.create_store(varname))
def load_deref(self, varname):
self.append_output(self.create_load_deref(varname))
def make_function_with_closure(
self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0
):
freevars = code.co_freevars
assert freevars
output = self._output
def gen_fn():
# Emitting `LOAD_FAST/LOAD_CLOSURE` with names in `co_freevars`
# requires that in the generated bytecode, these cells would keep
# their original local names, which we ensure via
# `CellVariable.local_name`.
for var in freevars:
assert var in self.cell_and_freevars()
output.append(self.create_load_closure(var))
output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
output.append(self.create_load_const(code))
if sys.version_info < (3, 11):
output.append(self.create_load_const(fn_name))
if sys.version_info >= (3, 13):
output.extend(
[
create_instruction("MAKE_FUNCTION"),
create_instruction("SET_FUNCTION_ATTRIBUTE", arg=0x08),
]
)
else:
output.append(create_instruction("MAKE_FUNCTION", arg=0x08))
if push_null and sys.version_info >= (3, 11):
self.add_push_null(gen_fn)
output.extend(self.rot_n(num_on_stack + 2))
output.extend(self.rot_n(num_on_stack + 2))
else:
gen_fn()
output.extend(self.rot_n(num_on_stack + 1))
self.clear_tos()
def create_load_python_module(self, mod) -> Instruction:
"""
Generate a LOAD_GLOBAL instruction to fetch a given python module.
"""
output = self.tx.output
global_scope = output.global_scope
name = re.sub(r"^.*[.]", "", mod.__name__)
if global_scope.get(name, None) is mod:
return self.create_load_global(name, add=True)
prefix = f"___module_{name}"
global_name = self.tx.output.install_global_by_id(prefix, mod)
return self.create_load_global(global_name, add=True)
def mark_source_temp(self, source: Source) -> None:
"""
Mark a source as a temp variable, so that it can be reused.
"""
if source not in self.tempvars:
self.tempvars[source] = None
def make_call_generated_code(self, fn_name: str) -> None:
"""Call the generated code function stored in fn_name"""
self.extend_output(self.load_function_name(fn_name, True))
graphargs = self.tx.output.graphargs
seen_sources: OrderedSet[Source] = OrderedSet()
def collect_temp_source(source):
if source in seen_sources:
# This source is used atleast twice, so it can be reused
self.mark_source_temp(source)
# Dont trace source further. This prevents us from marking too
# many nodes as temp sources.
return
seen_sources.add(source)
if isinstance(source, ChainedSource):
collect_temp_source(source.base)
if isinstance(source, DictGetItemSource) and isinstance(
source.index, Source
):
collect_temp_source(source.index)
# Collect all the sources that are used more than once, so that we can
# generate tmp variables in the generated pre-graph bytecode. This
# essentially implements CSE.
for arg in graphargs:
if arg.source is not None:
collect_temp_source(arg.source)
for arg in graphargs:
if arg.pass_arg_as_tensor:
self.add_push_null(
lambda: self.extend_output(
[
self.create_load_python_module(torch),
self.create_load_attr("_as_tensor_fullprec"),
]
)
)
self.call_reconstruct(arg)
self.extend_output(create_call_function(1, False))
else:
self.call_reconstruct(arg)
self.extend_output(create_call_function(len(graphargs), False))
def load_import_from(self, module_name, object_name) -> None:
source = AttrSource(self.tx.import_source(module_name), object_name)
# Note: This approach is somewhat aggressive because typically, a source is marked
# as a tempvar only when it is used more than once. In this case, we're marking it
# as a tempvar without performing that analysis. However, this is a simple solution,
# and in many cases, load imports are reused multiple times.
self.mark_source_temp(source)
self(source)
def create_call_function_kw(self, nargs, kw_names, push_null) -> list[Instruction]:
if sys.version_info >= (3, 13):
output = create_call_function(nargs, push_null)
assert output[-1].opname == "CALL"
output.insert(-1, self.create_load_const(kw_names))
output[-1] = create_instruction("CALL_KW", arg=nargs)
return output
elif sys.version_info >= (3, 11):
output = create_call_function(nargs, push_null)
if sys.version_info >= (3, 12):
idx = -1
expected_inst = "CALL"
else:
idx = -2
expected_inst = "PRECALL"
assert output[idx].opname == expected_inst
kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
output.insert(idx, kw_names_inst)
return output
return [
self.create_load_const(kw_names),
create_instruction("CALL_FUNCTION_KW", arg=nargs),
]
def create_delete(self, value) -> Instruction:
return create_instruction("DELETE_FAST", argval=value)
|