File size: 27,348 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# mypy: allow-untyped-defs

"""
This module provides utilities for generating Python bytecode in PyTorch's Dynamo system.
It includes functionality for:
- Constructing bytecode sequences for Python operations
- Managing stack operations and variable tracking
- Handling graph outputs and their conversions
- Supporting different Python versions (3.11+, 3.12+, 3.13+)
- Converting high-level operations to low-level bytecode instructions
- Managing constant loading and attribute access
- Supporting function creation and closure handling
"""

import collections
import dataclasses
import re
import sys
import types
from collections import Counter
from typing import Optional, Union

import torch.nn
from torch.utils._ordered_set import OrderedSet

from . import graph_break_hints, utils
from .bytecode_transformation import (
    add_push_null,
    add_push_null_call_function_ex,
    create_call_function,
    create_call_method,
    create_dup_top,
    create_instruction,
    create_load_const,
    create_load_method,
    create_rot_n,
    Instruction,
)
from .exc import IncorrectUsage, unimplemented_v2
from .source import AttrSource, ChainedSource, DictGetItemSource, Source
from .utils import is_safe_constant, rot_n_helper
from .variables.base import ValueMutationExisting, VariableTracker
from .variables.functions import (
    ContextlibContextManagerLocalGeneratorObjectVariable,
    LocalGeneratorObjectVariable,
)
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
    NumpyNdarrayVariable,
    SymNodeVariable,
    TensorVariable,
    UnspecializedPythonVariable,
)
from .variables.torch_function import TensorWithTFOverrideVariable


@dataclasses.dataclass
class GraphOutputEntry:
    index: int
    variable: VariableTracker


class PyCodegen:
    """
    Helper class uses for constructing Python bytecode
    """

    def __init__(
        self,
        tx=None,
        root: Optional[torch.nn.Module] = None,
        graph_output_var: Optional[str] = None,
        tempvars=None,
        overridden_sources=None,
    ) -> None:
        self.root = root
        self.top_of_stack: Optional[Union[VariableTracker, Source]] = None
        self.uses: Counter[VariableTracker] = collections.Counter()
        self.graph_outputs: dict[int, GraphOutputEntry] = {}
        self._output: list[Instruction] = []
        # This determines which VariableTracker/Source should be stored as
        # locals, and maps the VariableTracker/Source to the local variable
        # name. Note that it could map to None initially, in which case we'll
        # overwrite it to map to real temporary names via `add_cache`.
        self.tempvars = tempvars or {}
        self.tx = tx
        self.graph_output_var = graph_output_var
        self.code_options = self.tx.output.code_options
        self.cell_and_freevars = self.tx.cell_and_freevars
        self.new_var = self.tx.output.new_var
        self.value_from_source: bool = True
        # This serves as a way for codegen to use a different source; we need
        # this because sometimes we can't easily modify the original source
        # without affecting other components, e.g., guards.
        self.overridden_sources: dict[Source, Source] = overridden_sources or {}

    def restore_stack(self, stack_values, *, value_from_source=True):
        prev = self.value_from_source
        self.value_from_source &= value_from_source
        try:
            self.foreach(stack_values)
        finally:
            self.value_from_source = prev

    def graph_output_vars(self):
        return [x.variable for x in self.graph_outputs.values()]

    def call_reconstruct(self, value):
        res = value.reconstruct(self)
        assert res is None, f"reconstruct!=None {value}"

    def add_push_null(self, gen_fn, call_function_ex=False):
        """
        `gen_fn` generates instructions via PyCodegen methods
        that push a single callable to the stack.

        `add_push_null` pushes a NULL to the stack before or after the
        instructions generated by `gen_fn`, depending on Python version.

        Will attempt to use the NULL push bit for instructions
        with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR).
        """
        old_len = len(self._output)
        if sys.version_info < (3, 13):
            # gen_fn may DUP_TOP instead if TOS is not cleared.
            # Will cause problems since NULL will be pushed right
            # before the generated instructions in <= 3.12
            self.clear_tos()
        gen_fn()
        # inplace modify self._output
        added_insts = self._output[old_len:]
        del self._output[old_len:]
        if call_function_ex:
            self._output.extend(add_push_null_call_function_ex(added_insts))
        else:
            self._output.extend(add_push_null(added_insts))
        if sys.version_info >= (3, 13):
            # NULL will be at top of stack
            self.clear_tos()

    def __call__(self, value, allow_cache=True):
        """
        Generate code such that top-of-stack (TOS) is set to value.

        `allow_cache` controls the behavior in the following manner. `value` can
        either be a VariableTracker or a Source.

        If `value` is a `Source`, `allow_cache` must be True (invariant asserted
        below). If the source was reconstructed earlier, we will reuse the
        generated code by loading from top of stack or tempvars.

        If `value` is a `VariableTracker`, we have the following cases:

        1) `allow_cache=True`
            a) If the value.source is not None, we will emit the code based on
            `value.source` to handle aliasing.
            b) If value.source is None (example reconstructing a local list
            returned by the compiled function), we will reconstruct the variable
            tracker (w/o any source) to emit bytecode that generates a new
            python object.

            In both cases of value.source being None or not, if the value was
            reconstructed earlier, we will reuse the generated code by loading from
            top of stack or tempvars.

        2) `allow_cache=False` - This is a special case (allow_cache defaults to
        True).
            a) If the value.source is not None, we reconstruct the variable
            tracker and emit a new python object. You might wonder what about
            aliasing? The place where we use this config also has the followup
            code where the original python object is assigned to this new python
            value to handle aliasing (check side_effects.py and search for
            allow_cache=False).

            b) If value.source is None, this is not allowed. TODO - assert this.

        Notable effects:
        1. `self.top_of_stack` will be set to `value`, if we don't codegen
           `value` based on source.
        2. `self.uses[value]` will increment, if we don't codegen `value` based
           on source or cache/top-of-stack reuse; in other words, if we codegen
           as if `value` is modelling some brand new python value.
        """
        if isinstance(value, Source):
            # If the source needs to be overridden, use the new one.
            source = self.overridden_sources.get(value, value)
            assert allow_cache is True, "allow_cache must be True for Source"
            if self.top_of_stack is value:
                self._output.append(create_dup_top())
                return

            if self.tempvars.get(source) is not None:
                self._output.append(self.create_load(self.tempvars[source]))
                self.top_of_stack = source
                return

            try:
                self.call_reconstruct(source)
            except NotImplementedError:
                unimplemented_v2(
                    gb_type="Reconstruction failure: source.reconstruct not implemented",
                    context=str(source),
                    explanation=f"Dynamo has no bytecode reconstruction implemented for {type(source)} variable {source}.",
                    hints=[*graph_break_hints.DYNAMO_BUG],
                )

            self._output.append(create_dup_top())
            self.add_cache(source)
            self.top_of_stack = source

            return

        assert isinstance(value, VariableTracker)
        output = self._output
        graph_outputs = self.graph_outputs

        if allow_cache:
            if self.top_of_stack is value:
                output.append(create_dup_top())
                return

            if self.tempvars.get(value) is not None:
                output.append(self.create_load(self.tempvars[value]))
                self.top_of_stack = value
                return

        if value.is_realized() and isinstance(
            value, ContextlibContextManagerLocalGeneratorObjectVariable
        ):
            raise IncorrectUsage(
                "NYI: Returning a @contextmanager object from a torch.compile function"
            )

        # Dynamo normally prefers codegen from source to account for aliasing.
        if (
            value.source is not None
            and allow_cache
            and not (
                value.is_realized() and isinstance(value, LocalGeneratorObjectVariable)
            )
        ):
            # There's a corner case for export: for instance, if the computation
            # graph is just identity on an input tensor, Dynamo would just emit
            # a `LOAD_FAST` from the input source, rather than generating an
            # identity FX graph.
            #
            # However, export wants to maximize graph capture; in the case
            # above, export _wants to_ obtain an identity FX graph (despite it
            # appears unnecessarily expensive for `torch.compile`), so we have
            # the following option to override Dynamo's preference for codegen
            # from source. Morever, this option applies recursively, for cases
            # like input tensor being returned in a new dictionary.
            #
            # And why the `ValueMutationExisting` check? Not sure, so leaving it
            # to keep the old behavior, as when `value_from_source` was
            # introduced. TODO sort out the invariants among side effect,
            # codegen and export.
            if (
                isinstance(value.mutation_type, ValueMutationExisting)
                or self.value_from_source
            ):
                return self(value.source)

        if value.is_python_constant() and is_safe_constant(value.as_python_constant()):
            output.append(self.create_load_const(value.as_python_constant()))
        elif isinstance(value, TensorWithTFOverrideVariable):
            graph_outputs_key = self.add_graph_output(value)

            self.add_push_null(
                lambda: self.load_import_from(utils.__name__, "to_subclass")
            )
            self.load_graph_output(graph_outputs[graph_outputs_key].index)
            output.append(
                self.create_load_global(
                    value.global_mangled_class_name(self.tx), add=True
                )
            )
            output.extend(create_call_function(2, False))
        elif (
            isinstance(value, SymNodeVariable)
            and value.python_type() == float
            and not self.tx.export
        ):
            # This is a little unusual; force the output convention to be a
            # Tensor here.  Don't do this for export because this is
            # apparently load bearing for export tests (but I am a bit
            # doubtful it actually works in the real world)
            # NB: It works to add_graph_output on a computed expression
            # as_tensor here, because we memoize as_tensor calls on
            # SymNodeVariable!
            graph_outputs_key = self.add_graph_output(
                value.as_tensor(self.tx, torch.float64)
            )

            def gen_fn():
                self.load_graph_output(graph_outputs[graph_outputs_key].index)
                output.append(self.create_load_attr("item"))

            self.add_push_null(gen_fn)
            output.extend(create_call_function(0, False))
        elif isinstance(
            value,
            (
                TensorVariable,
                SymNodeVariable,
                UnspecializedPythonVariable,
                NumpyNdarrayVariable,
            ),
        ):
            graph_outputs_key = self.add_graph_output(value)

            if isinstance(value, NumpyNdarrayVariable):
                self.add_push_null(
                    lambda: self.load_import_from(utils.__name__, "to_numpy_helper")
                )
                self.load_graph_output(graph_outputs[graph_outputs_key].index)
                output.extend(create_call_function(1, False))
            elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:

                def gen_fn():
                    self.load_graph_output(graph_outputs[graph_outputs_key].index)
                    output.append(self.create_load_attr("item"))

                self.add_push_null(gen_fn)
                output.extend(create_call_function(0, False))
            else:
                self.load_graph_output(graph_outputs[graph_outputs_key].index)
        elif isinstance(value, NNModuleVariable):
            parts = value.module_key.split(".")
            if parts[0] in self.code_options["co_varnames"]:
                output.append(self.create_load(parts[0]))
                parts = parts[1:]
            else:
                assert self.root is not None
                output.append(self.create_load_const_unchecked(self.root))
            for part in parts:
                output.append(self.create_load_attr(part))
        else:
            self.uses[value] += 1
            try:
                self.call_reconstruct(value)
            except NotImplementedError:
                unimplemented_v2(
                    gb_type="Reconstruction failure",
                    context=str(value),
                    explanation=f"Dynamo has no bytecode reconstruction implemented for sourceless variable {value}.",
                    hints=[
                        "If Dynamo attempting to trace a return statement and your code is attempting to return a variable "
                        "that Dynamo cannot reconstruct, then remove it from the return statement.",
                        *graph_break_hints.CAUSED_BY_EARLIER_GRAPH_BREAK,
                        "Report an issue to PyTorch if you need reconstrtuction support. Note that objects that don't have"
                        "reconstruction rules may be fundamentally unreconstructable.",
                    ],
                )
            if allow_cache and value in self.tempvars:
                self._output.append(create_dup_top())
                self.add_cache(value)

        self.top_of_stack = value

    def add_graph_output(self, value):
        graph_outputs_key = id(value.as_proxy())
        if graph_outputs_key not in self.graph_outputs:
            self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
                len(self.graph_outputs), value
            )
        return graph_outputs_key

    def load_graph_output(self, index):
        output = self._output
        output.append(self.create_load(self.graph_output_var))
        output.append(self.create_load_const(index))
        output.append(self.create_binary_subscr())

    def add_cache(self, value):
        var = self.new_var()
        self.tempvars[value] = var
        self._output.append(self.create_store(var))

    def foreach(self, items):
        for i in items:
            self(i)

    def create_binary_subscr(self) -> Instruction:
        return create_instruction("BINARY_SUBSCR")

    def setup_globally_cached(self, name, value):
        """Store value in a new global"""
        name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
        f_globals = self.tx.f_globals
        if name in f_globals:
            assert id(f_globals[name]) == id(value)
        else:
            f_globals[name] = value
        return [self.create_load_global(name, add=True)]

    def clear_tos(self):
        self.top_of_stack = None

    def append_output(self, inst):
        assert isinstance(inst, Instruction)
        self._output.append(inst)
        self.clear_tos()

    def extend_output(self, insts):
        assert all(isinstance(x, Instruction) for x in insts)
        self._output.extend(insts)
        self.clear_tos()

    def get_instructions(self) -> list[Instruction]:
        return self._output

    def create_load(self, name) -> Instruction:
        assert name in self.code_options["co_varnames"], f"{name} missing"
        return create_instruction("LOAD_FAST", argval=name)

    def create_load_closure(self, name) -> Instruction:
        assert name in self.cell_and_freevars()
        inst_name = "LOAD_FAST" if sys.version_info >= (3, 13) else "LOAD_CLOSURE"
        return create_instruction(inst_name, argval=name)

    def create_load_deref(self, name) -> Instruction:
        assert name in self.cell_and_freevars()
        return create_instruction("LOAD_DEREF", argval=name)

    def create_store(self, name) -> Instruction:
        assert name in self.code_options["co_varnames"], f"{name} missing"
        return create_instruction("STORE_FAST", argval=name)

    def create_store_deref(self, name) -> Instruction:
        assert name in self.cell_and_freevars()
        return create_instruction("STORE_DEREF", argval=name)

    def create_load_global(self, name, add=False) -> Instruction:
        if add:
            self.tx.output.update_co_names(name)
        assert name in self.code_options["co_names"], f"{name} not in co_names"
        return create_instruction("LOAD_GLOBAL", argval=name)

    def create_load_const(self, value) -> Instruction:
        return create_load_const(value)

    def create_load_const_unchecked(self, value) -> Instruction:
        return create_load_const(value, checked=False)

    def load_method(self, name):
        self.tx.output.update_co_names(name)
        self.append_output(create_load_method(name))

    def call_method(self, nargs):
        self.extend_output(create_call_method(nargs))

    def create_load_attr(self, name) -> Instruction:
        if name not in self.code_options["co_names"]:
            self.code_options["co_names"] += (name,)
        return create_instruction("LOAD_ATTR", argval=name)

    def load_attr(self, name):
        self.append_output(self.create_load_attr(name))

    def create_load_attrs(self, names):
        return [self.create_load_attr(name) for name in names.split(".")]

    def create_store_attr(self, name) -> Instruction:
        if name not in self.code_options["co_names"]:
            self.code_options["co_names"] += (name,)
        return create_instruction("STORE_ATTR", argval=name)

    def store_attr(self, name):
        self.append_output(self.create_store_attr(name))

    def load_function_name(self, fn_name, push_null, num_on_stack=0):
        """Load the global fn_name on the stack num_on_stack down"""
        output = []
        if push_null and sys.version_info >= (3, 11):
            output.extend(add_push_null(self.create_load_global(fn_name, add=True)))
            if num_on_stack > 0:
                output.extend(
                    [
                        *self.rot_n(num_on_stack + 2),
                        *self.rot_n(num_on_stack + 2),
                    ]
                )
        else:
            output.extend(
                [
                    self.create_load_global(fn_name, add=True),
                    *self.rot_n(num_on_stack + 1),
                ]
            )
        return output

    def rot_n(self, n):
        try:
            return create_rot_n(n)
        except AttributeError:
            # desired rotate bytecode doesn't exist, generate equivalent bytecode
            return [
                create_instruction("BUILD_TUPLE", arg=n),
                self.create_load_const_unchecked(rot_n_helper(n)),
                *create_rot_n(2),
                create_instruction("CALL_FUNCTION_EX", arg=0),
                create_instruction("UNPACK_SEQUENCE", arg=n),
            ]

    def pop_null(self):
        # POP_TOP doesn't work for null, so we pop nulls by pushing in a
        # nop function, calling it (which consumes the null), and popping the result.
        assert sys.version_info >= (3, 11)
        return [
            self.create_load_const_unchecked(lambda: None),
            # 3.13 swapped NULL and callable
            *(
                (create_instruction("SWAP", arg=2),)
                if sys.version_info >= (3, 13)
                else ()
            ),
            *create_call_function(0, False),
            create_instruction("POP_TOP"),
        ]

    def pop_top(self):
        self.append_output(create_instruction("POP_TOP"))

    def call_function(self, nargs: int, push_null: bool):
        self.extend_output(create_call_function(nargs, push_null=push_null))

    def dup_top(self):
        self.append_output(create_dup_top())

    def store(self, varname):
        self.append_output(self.create_store(varname))

    def load_deref(self, varname):
        self.append_output(self.create_load_deref(varname))

    def make_function_with_closure(
        self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0
    ):
        freevars = code.co_freevars
        assert freevars
        output = self._output

        def gen_fn():
            # Emitting `LOAD_FAST/LOAD_CLOSURE` with names in `co_freevars`
            # requires that in the generated bytecode, these cells would keep
            # their original local names, which we ensure via
            # `CellVariable.local_name`.
            for var in freevars:
                assert var in self.cell_and_freevars()
                output.append(self.create_load_closure(var))
            output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
            output.append(self.create_load_const(code))
            if sys.version_info < (3, 11):
                output.append(self.create_load_const(fn_name))
            if sys.version_info >= (3, 13):
                output.extend(
                    [
                        create_instruction("MAKE_FUNCTION"),
                        create_instruction("SET_FUNCTION_ATTRIBUTE", arg=0x08),
                    ]
                )
            else:
                output.append(create_instruction("MAKE_FUNCTION", arg=0x08))

        if push_null and sys.version_info >= (3, 11):
            self.add_push_null(gen_fn)
            output.extend(self.rot_n(num_on_stack + 2))
            output.extend(self.rot_n(num_on_stack + 2))
        else:
            gen_fn()
            output.extend(self.rot_n(num_on_stack + 1))
        self.clear_tos()

    def create_load_python_module(self, mod) -> Instruction:
        """
        Generate a LOAD_GLOBAL instruction to fetch a given python module.
        """
        output = self.tx.output
        global_scope = output.global_scope
        name = re.sub(r"^.*[.]", "", mod.__name__)
        if global_scope.get(name, None) is mod:
            return self.create_load_global(name, add=True)
        prefix = f"___module_{name}"
        global_name = self.tx.output.install_global_by_id(prefix, mod)
        return self.create_load_global(global_name, add=True)

    def mark_source_temp(self, source: Source) -> None:
        """
        Mark a source as a temp variable, so that it can be reused.
        """
        if source not in self.tempvars:
            self.tempvars[source] = None

    def make_call_generated_code(self, fn_name: str) -> None:
        """Call the generated code function stored in fn_name"""
        self.extend_output(self.load_function_name(fn_name, True))

        graphargs = self.tx.output.graphargs

        seen_sources: OrderedSet[Source] = OrderedSet()

        def collect_temp_source(source):
            if source in seen_sources:
                # This source is used atleast twice, so it can be reused
                self.mark_source_temp(source)
                # Dont trace source further. This prevents us from marking too
                # many nodes as temp sources.
                return

            seen_sources.add(source)

            if isinstance(source, ChainedSource):
                collect_temp_source(source.base)

            if isinstance(source, DictGetItemSource) and isinstance(
                source.index, Source
            ):
                collect_temp_source(source.index)

        # Collect all the sources that are used more than once, so that we can
        # generate tmp variables in the generated pre-graph bytecode. This
        # essentially implements CSE.
        for arg in graphargs:
            if arg.source is not None:
                collect_temp_source(arg.source)

        for arg in graphargs:
            if arg.pass_arg_as_tensor:
                self.add_push_null(
                    lambda: self.extend_output(
                        [
                            self.create_load_python_module(torch),
                            self.create_load_attr("_as_tensor_fullprec"),
                        ]
                    )
                )
                self.call_reconstruct(arg)
                self.extend_output(create_call_function(1, False))
            else:
                self.call_reconstruct(arg)

        self.extend_output(create_call_function(len(graphargs), False))

    def load_import_from(self, module_name, object_name) -> None:
        source = AttrSource(self.tx.import_source(module_name), object_name)
        # Note: This approach is somewhat aggressive because typically, a source is marked
        # as a tempvar only when it is used more than once. In this case, we're marking it
        # as a tempvar without performing that analysis. However, this is a simple solution,
        # and in many cases, load imports are reused multiple times.
        self.mark_source_temp(source)
        self(source)

    def create_call_function_kw(self, nargs, kw_names, push_null) -> list[Instruction]:
        if sys.version_info >= (3, 13):
            output = create_call_function(nargs, push_null)
            assert output[-1].opname == "CALL"
            output.insert(-1, self.create_load_const(kw_names))
            output[-1] = create_instruction("CALL_KW", arg=nargs)
            return output
        elif sys.version_info >= (3, 11):
            output = create_call_function(nargs, push_null)
            if sys.version_info >= (3, 12):
                idx = -1
                expected_inst = "CALL"
            else:
                idx = -2
                expected_inst = "PRECALL"
            assert output[idx].opname == expected_inst
            kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
            output.insert(idx, kw_names_inst)
            return output
        return [
            self.create_load_const(kw_names),
            create_instruction("CALL_FUNCTION_KW", arg=nargs),
        ]

    def create_delete(self, value) -> Instruction:
        return create_instruction("DELETE_FAST", argval=value)