jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
"""
This module can be used to solve problems related
to 2D Cables.
"""
from sympy.core.sympify import sympify
from sympy.core.symbol import Symbol,symbols
from sympy import sin, cos, pi, atan, diff, Piecewise, solve, rad
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.solvers.solveset import linsolve
from sympy.matrices import Matrix
from sympy.plotting import plot
class Cable:
"""
Cables are structures in engineering that support
the applied transverse loads through the tensile
resistance developed in its members.
Cables are widely used in suspension bridges, tension
leg offshore platforms, transmission lines, and find
use in several other engineering applications.
Examples
========
A cable is supported at (0, 10) and (10, 10). Two point loads
acting vertically downwards act on the cable, one with magnitude 3 kN
and acting 2 meters from the left support and 3 meters below it, while
the other with magnitude 2 kN is 6 meters from the left support and
6 meters below it.
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(-1, ('P', 2, 7, 3, 270))
>>> c.apply_load(-1, ('Q', 6, 4, 2, 270))
>>> c.loads
{'distributed': {}, 'point_load': {'P': [3, 270], 'Q': [2, 270]}}
>>> c.loads_position
{'P': [2, 7], 'Q': [6, 4]}
"""
def __init__(self, support_1, support_2):
"""
Initializes the class.
Parameters
==========
support_1 and support_2 are tuples of the form
(label, x, y), where
label : String or symbol
The label of the support
x : Sympifyable
The x coordinate of the position of the support
y : Sympifyable
The y coordinate of the position of the support
"""
self._left_support = []
self._right_support = []
self._supports = {}
self._support_labels = []
self._loads = {"distributed": {}, "point_load": {}}
self._loads_position = {}
self._length = 0
self._reaction_loads = {}
self._tension = {}
self._lowest_x_global = sympify(0)
self._lowest_y_global = sympify(0)
self._cable_eqn = None
self._tension_func = None
if support_1[0] == support_2[0]:
raise ValueError("Supports can not have the same label")
elif support_1[1] == support_2[1]:
raise ValueError("Supports can not be at the same location")
x1 = sympify(support_1[1])
y1 = sympify(support_1[2])
self._supports[support_1[0]] = [x1, y1]
x2 = sympify(support_2[1])
y2 = sympify(support_2[2])
self._supports[support_2[0]] = [x2, y2]
if support_1[1] < support_2[1]:
self._left_support.append(x1)
self._left_support.append(y1)
self._right_support.append(x2)
self._right_support.append(y2)
self._support_labels.append(support_1[0])
self._support_labels.append(support_2[0])
else:
self._left_support.append(x2)
self._left_support.append(y2)
self._right_support.append(x1)
self._right_support.append(y1)
self._support_labels.append(support_2[0])
self._support_labels.append(support_1[0])
for i in self._support_labels:
self._reaction_loads[Symbol("R_"+ i +"_x")] = 0
self._reaction_loads[Symbol("R_"+ i +"_y")] = 0
@property
def supports(self):
"""
Returns the supports of the cable along with their
positions.
"""
return self._supports
@property
def left_support(self):
"""
Returns the position of the left support.
"""
return self._left_support
@property
def right_support(self):
"""
Returns the position of the right support.
"""
return self._right_support
@property
def loads(self):
"""
Returns the magnitude and direction of the loads
acting on the cable.
"""
return self._loads
@property
def loads_position(self):
"""
Returns the position of the point loads acting on the
cable.
"""
return self._loads_position
@property
def length(self):
"""
Returns the length of the cable.
"""
return self._length
@property
def reaction_loads(self):
"""
Returns the reaction forces at the supports, which are
initialized to 0.
"""
return self._reaction_loads
@property
def tension(self):
"""
Returns the tension developed in the cable due to the loads
applied.
"""
return self._tension
def tension_at(self, x):
"""
Returns the tension at a given value of x developed due to
distributed load.
"""
if 'distributed' not in self._tension.keys():
raise ValueError("No distributed load added or solve method not called")
if x > self._right_support[0] or x < self._left_support[0]:
raise ValueError("The value of x should be between the two supports")
A = self._tension['distributed']
X = Symbol('X')
return A.subs({X:(x-self._lowest_x_global)})
def apply_length(self, length):
"""
This method specifies the length of the cable
Parameters
==========
length : Sympifyable
The length of the cable
Examples
========
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_length(20)
>>> c.length
20
"""
dist = ((self._left_support[0] - self._right_support[0])**2
- (self._left_support[1] - self._right_support[1])**2)**(1/2)
if length < dist:
raise ValueError("length should not be less than the distance between the supports")
self._length = length
def change_support(self, label, new_support):
"""
This method changes the mentioned support with a new support.
Parameters
==========
label: String or symbol
The label of the support to be changed
new_support: Tuple of the form (new_label, x, y)
new_label: String or symbol
The label of the new support
x: Sympifyable
The x-coordinate of the position of the new support.
y: Sympifyable
The y-coordinate of the position of the new support.
Examples
========
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.supports
{'A': [0, 10], 'B': [10, 10]}
>>> c.change_support('B', ('C', 5, 6))
>>> c.supports
{'A': [0, 10], 'C': [5, 6]}
"""
if label not in self._supports:
raise ValueError("No support exists with the given label")
i = self._support_labels.index(label)
rem_label = self._support_labels[(i+1)%2]
x1 = self._supports[rem_label][0]
y1 = self._supports[rem_label][1]
x = sympify(new_support[1])
y = sympify(new_support[2])
for l in self._loads_position:
if l[0] >= max(x, x1) or l[0] <= min(x, x1):
raise ValueError("The change in support will throw an existing load out of range")
self._supports.pop(label)
self._left_support.clear()
self._right_support.clear()
self._reaction_loads.clear()
self._support_labels.remove(label)
self._supports[new_support[0]] = [x, y]
if x1 < x:
self._left_support.append(x1)
self._left_support.append(y1)
self._right_support.append(x)
self._right_support.append(y)
self._support_labels.append(new_support[0])
else:
self._left_support.append(x)
self._left_support.append(y)
self._right_support.append(x1)
self._right_support.append(y1)
self._support_labels.insert(0, new_support[0])
for i in self._support_labels:
self._reaction_loads[Symbol("R_"+ i +"_x")] = 0
self._reaction_loads[Symbol("R_"+ i +"_y")] = 0
def apply_load(self, order, load):
"""
This method adds load to the cable.
Parameters
==========
order : Integer
The order of the applied load.
- For point loads, order = -1
- For distributed load, order = 0
load : tuple
* For point loads, load is of the form (label, x, y, magnitude, direction), where:
label : String or symbol
The label of the load
x : Sympifyable
The x coordinate of the position of the load
y : Sympifyable
The y coordinate of the position of the load
magnitude : Sympifyable
The magnitude of the load. It must always be positive
direction : Sympifyable
The angle, in degrees, that the load vector makes with the horizontal
in the counter-clockwise direction. It takes the values 0 to 360,
inclusive.
* For uniformly distributed load, load is of the form (label, magnitude)
label : String or symbol
The label of the load
magnitude : Sympifyable
The magnitude of the load. It must always be positive
Examples
========
For a point load of magnitude 12 units inclined at 30 degrees with the horizontal:
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(-1, ('Z', 5, 5, 12, 30))
>>> c.loads
{'distributed': {}, 'point_load': {'Z': [12, 30]}}
>>> c.loads_position
{'Z': [5, 5]}
For a uniformly distributed load of magnitude 9 units:
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(0, ('X', 9))
>>> c.loads
{'distributed': {'X': 9}, 'point_load': {}}
"""
if order == -1:
if len(self._loads["distributed"]) != 0:
raise ValueError("Distributed load already exists")
label = load[0]
if label in self._loads["point_load"]:
raise ValueError("Label already exists")
x = sympify(load[1])
y = sympify(load[2])
if x > self._right_support[0] or x < self._left_support[0]:
raise ValueError("The load should be positioned between the supports")
magnitude = sympify(load[3])
direction = sympify(load[4])
self._loads["point_load"][label] = [magnitude, direction]
self._loads_position[label] = [x, y]
elif order == 0:
if len(self._loads_position) != 0:
raise ValueError("Point load(s) already exist")
label = load[0]
if label in self._loads["distributed"]:
raise ValueError("Label already exists")
magnitude = sympify(load[1])
self._loads["distributed"][label] = magnitude
else:
raise ValueError("Order should be either -1 or 0")
def remove_loads(self, *args):
"""
This methods removes the specified loads.
Parameters
==========
This input takes multiple label(s) as input
label(s): String or symbol
The label(s) of the loads to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(-1, ('Z', 5, 5, 12, 30))
>>> c.loads
{'distributed': {}, 'point_load': {'Z': [12, 30]}}
>>> c.remove_loads('Z')
>>> c.loads
{'distributed': {}, 'point_load': {}}
"""
for i in args:
if len(self._loads_position) == 0:
if i not in self._loads['distributed']:
raise ValueError("Error removing load " + i + ": no such load exists")
else:
self._loads['disrtibuted'].pop(i)
else:
if i not in self._loads['point_load']:
raise ValueError("Error removing load " + i + ": no such load exists")
else:
self._loads['point_load'].pop(i)
self._loads_position.pop(i)
def solve(self, *args):
"""
This method solves for the reaction forces at the supports, the tension developed in
the cable, and updates the length of the cable.
Parameters
==========
This method requires no input when solving for point loads
For distributed load, the x and y coordinates of the lowest point of the cable are
required as
x: Sympifyable
The x coordinate of the lowest point
y: Sympifyable
The y coordinate of the lowest point
Examples
========
For point loads,
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(("A", 0, 10), ("B", 10, 10))
>>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270))
>>> c.apply_load(-1, ('X', 4, 6, 8, 270))
>>> c.solve()
>>> c.tension
{A_Z: 8.91403453669861, X_B: 19*sqrt(13)/10, Z_X: 4.79150773600774}
>>> c.reaction_loads
{R_A_x: -5.25547445255474, R_A_y: 7.2, R_B_x: 5.25547445255474, R_B_y: 3.8}
>>> c.length
5.7560958484519 + 2*sqrt(13)
For distributed load,
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c=Cable(("A", 0, 40),("B", 100, 20))
>>> c.apply_load(0, ("X", 850))
>>> c.solve(58.58)
>>> c.tension
{'distributed': 36465.0*sqrt(0.00054335718671383*X**2 + 1)}
>>> c.tension_at(0)
61717.4130533677
>>> c.reaction_loads
{R_A_x: 36465.0, R_A_y: -49793.0, R_B_x: 44399.9537590861, R_B_y: 42868.2071025955}
"""
if len(self._loads_position) != 0:
sorted_position = sorted(self._loads_position.items(), key = lambda item : item[1][0])
sorted_position.append(self._support_labels[1])
sorted_position.insert(0, self._support_labels[0])
self._tension.clear()
moment_sum_from_left_support = 0
moment_sum_from_right_support = 0
F_x = 0
F_y = 0
self._length = 0
tension_func = []
x = symbols('x')
for i in range(1, len(sorted_position)-1):
if i == 1:
self._length+=sqrt((self._left_support[0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._left_support[1] - self._loads_position[sorted_position[i][0]][1])**2)
else:
self._length+=sqrt((self._loads_position[sorted_position[i-1][0]][0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._loads_position[sorted_position[i-1][0]][1] - self._loads_position[sorted_position[i][0]][1])**2)
if i == len(sorted_position)-2:
self._length+=sqrt((self._right_support[0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._right_support[1] - self._loads_position[sorted_position[i][0]][1])**2)
moment_sum_from_left_support += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._left_support[1] - self._loads_position[sorted_position[i][0]][1])
moment_sum_from_left_support += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._left_support[0] - self._loads_position[sorted_position[i][0]][0])
F_x += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180)
F_y += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180)
label = Symbol(sorted_position[i][0]+"_"+sorted_position[i+1][0])
y2 = self._loads_position[sorted_position[i][0]][1]
x2 = self._loads_position[sorted_position[i][0]][0]
y1 = 0
x1 = 0
if i == len(sorted_position)-2:
x1 = self._right_support[0]
y1 = self._right_support[1]
else:
x1 = self._loads_position[sorted_position[i+1][0]][0]
y1 = self._loads_position[sorted_position[i+1][0]][1]
angle_with_horizontal = atan((y1 - y2)/(x1 - x2))
tension = -(moment_sum_from_left_support)/(abs(self._left_support[1] - self._loads_position[sorted_position[i][0]][1])*cos(angle_with_horizontal) + abs(self._left_support[0] - self._loads_position[sorted_position[i][0]][0])*sin(angle_with_horizontal))
self._tension[label] = tension
tension_func.append((tension, x<=x1))
moment_sum_from_right_support += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._right_support[1] - self._loads_position[sorted_position[i][0]][1])
moment_sum_from_right_support += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._right_support[0] - self._loads_position[sorted_position[i][0]][0])
label = Symbol(sorted_position[0][0]+"_"+sorted_position[1][0])
y2 = self._loads_position[sorted_position[1][0]][1]
x2 = self._loads_position[sorted_position[1][0]][0]
x1 = self._left_support[0]
y1 = self._left_support[1]
angle_with_horizontal = -atan((y2 - y1)/(x2 - x1))
tension = -(moment_sum_from_right_support)/(abs(self._right_support[1] - self._loads_position[sorted_position[1][0]][1])*cos(angle_with_horizontal) + abs(self._right_support[0] - self._loads_position[sorted_position[1][0]][0])*sin(angle_with_horizontal))
self._tension[label] = tension
tension_func.insert(0,(tension, x<=x2))
self._tension_func = Piecewise(*tension_func)
angle_with_horizontal = pi/2 - angle_with_horizontal
label = self._support_labels[0]
self._reaction_loads[Symbol("R_"+label+"_x")] = -sin(angle_with_horizontal) * tension
F_x += -sin(angle_with_horizontal) * tension
self._reaction_loads[Symbol("R_"+label+"_y")] = cos(angle_with_horizontal) * tension
F_y += cos(angle_with_horizontal) * tension
label = self._support_labels[1]
self._reaction_loads[Symbol("R_"+label+"_x")] = -F_x
self._reaction_loads[Symbol("R_"+label+"_y")] = -F_y
elif len(self._loads['distributed']) != 0 :
if len(args) == 0:
raise ValueError("Provide the lowest point of the cable")
lowest_x = sympify(args[0])
self._lowest_x_global = lowest_x
a = Symbol('a', positive=True)
c = Symbol('c')
# augmented matrix form of linsolve
M = Matrix(
[[(self._left_support[0]-lowest_x)**2, 1, self._left_support[1]],
[(self._right_support[0]-lowest_x)**2, 1, self._right_support[1]],
])
coefficient_solution = list(linsolve(M, (a, c)))
if len(coefficient_solution) ==0 or coefficient_solution[0][0]== 0:
raise ValueError("The lowest point is inconsistent with the supports")
A = coefficient_solution[0][0]
C = coefficient_solution[0][1] + coefficient_solution[0][0]*lowest_x**2
B = -2*coefficient_solution[0][0]*lowest_x
self._lowest_y_global = coefficient_solution[0][1]
lowest_y = self._lowest_y_global
# y = A*x**2 + B*x + C
# shifting origin to lowest point
X = Symbol('X')
Y = Symbol('Y')
Y = A*(X + lowest_x)**2 + B*(X + lowest_x) + C - lowest_y
temp_list = list(self._loads['distributed'].values())
applied_force = temp_list[0]
horizontal_force_constant = (applied_force * (self._right_support[0] - lowest_x)**2) / (2 * (self._right_support[1] - lowest_y))
self._tension.clear()
tangent_slope_to_curve = diff(Y, X)
self._tension['distributed'] = horizontal_force_constant / (cos(atan(tangent_slope_to_curve)))
label = self._support_labels[0]
self._reaction_loads[Symbol("R_"+label+"_x")] = self.tension_at(self._left_support[0]) * cos(atan(tangent_slope_to_curve.subs(X, self._left_support[0] - lowest_x)))
self._reaction_loads[Symbol("R_"+label+"_y")] = self.tension_at(self._left_support[0]) * sin(atan(tangent_slope_to_curve.subs(X, self._left_support[0] - lowest_x)))
label = self._support_labels[1]
self._reaction_loads[Symbol("R_"+label+"_x")] = self.tension_at(self._left_support[0]) * cos(atan(tangent_slope_to_curve.subs(X, self._right_support[0] - lowest_x)))
self._reaction_loads[Symbol("R_"+label+"_y")] = self.tension_at(self._left_support[0]) * sin(atan(tangent_slope_to_curve.subs(X, self._right_support[0] - lowest_x)))
def draw(self):
"""
This method is used to obtain a plot for the specified cable with its supports,
shape and loads.
Examples
========
For point loads,
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(("A", 0, 10), ("B", 10, 10))
>>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270))
>>> c.apply_load(-1, ('X', 4, 6, 8, 270))
>>> c.solve()
>>> p = c.draw()
>>> p # doctest: +ELLIPSIS
Plot object containing:
[0]: cartesian line: Piecewise((10 - 1.37*x, x <= 2), (8.52 - 0.63*x, x <= 4), (2*x/3 + 10/3, x <= 10)) for x over (0.0, 10.0)
...
>>> p.show()
For uniformly distributed loads,
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c=Cable(("A", 0, 40),("B", 100, 20))
>>> c.apply_load(0, ("X", 850))
>>> c.solve(58.58)
>>> p = c.draw()
>>> p # doctest: +ELLIPSIS
Plot object containing:
[0]: cartesian line: 0.0116550116550117*(x - 58.58)**2 + 0.00447086247086247 for x over (0.0, 100.0)
[1]: cartesian line: -7.49552913752915 for x over (0.0, 100.0)
...
>>> p.show()
"""
x = Symbol("x")
annotations = []
support_rectangles = self._draw_supports()
xy_min = min(self._left_support[0],self._lowest_y_global)
xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
max_diff = xy_max - xy_min
if len(self._loads_position) != 0:
self._cable_eqn = self._draw_cable(-1)
annotations += self._draw_loads(-1)
elif len(self._loads['distributed']) != 0 :
self._cable_eqn = self._draw_cable(0)
annotations += self._draw_loads(0)
if not self._cable_eqn:
raise ValueError("solve method not called and/or values provided for loads and supports not adequate")
cab_plot = plot(*self._cable_eqn,(x,self._left_support[0],self._right_support[0]),
xlim=(xy_min-0.5*max_diff,xy_max+0.5*max_diff),
ylim=(xy_min-0.5*max_diff,xy_max+0.5*max_diff),
rectangles=support_rectangles,show= False,annotations=annotations, axis=False)
return cab_plot
def _draw_supports(self):
member_rectangles = []
xy_min = min(self._left_support[0],self._lowest_y_global)
xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
max_diff = xy_max - xy_min
supp_width = 0.075*max_diff
member_rectangles.append(
{
'xy': (self._left_support[0]-supp_width,self._left_support[1]),
'width': supp_width,
'height':supp_width,
'color':'brown',
'fill': False
}
)
member_rectangles.append(
{
'xy': (self._right_support[0],self._right_support[1]),
'width': supp_width,
'height':supp_width,
'color':'brown',
'fill': False
}
)
return member_rectangles
def _draw_cable(self,order):
xy_min = min(self._left_support[0],self._lowest_y_global)
xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
max_diff = xy_max - xy_min
if order == -1 :
x,y = symbols('x y')
line_func = []
sorted_position = sorted(self._loads_position.items(), key = lambda item : item[1][0])
for i in range(len(sorted_position)):
if(i==0):
y = ((sorted_position[i][1][1] - self._left_support[1])*(x-self._left_support[0]))/(sorted_position[i][1][0]- self._left_support[0]) + self._left_support[1]
else:
y = ((sorted_position[i][1][1] - sorted_position[i-1][1][1] )*(x-sorted_position[i-1][1][0]))/(sorted_position[i][1][0]- sorted_position[i-1][1][0]) + sorted_position[i-1][1][1]
line_func.append((y,x<=sorted_position[i][1][0]))
y = ((sorted_position[len(sorted_position)-1][1][1] - self._right_support[1])*(x-self._right_support[0]))/(sorted_position[i][1][0]- self._right_support[0]) + self._right_support[1]
line_func.append((y,x<=self._right_support[0]))
return [Piecewise(*line_func)]
elif order == 0:
x0 = self._lowest_x_global
diff_force_height = max_diff*0.075
a,c,x,y = symbols('a c x y')
parabola_eqn = a*(x-x0)**2 + c - y
points = [(self._left_support[0],self._left_support[1]),(self._right_support[0],self._right_support[1])]
equations = []
for px, py in points:
equations.append(parabola_eqn.subs({x: px, y: py}))
solution = solve(equations, (a, c))
parabola_eqn = solution[a]*(x-x0)**2 + solution[c]
return [parabola_eqn, self._lowest_y_global - diff_force_height]
def _draw_loads(self,order):
xy_min = min(self._left_support[0],self._lowest_y_global)
xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
max_diff = xy_max - xy_min
if(order==-1):
arrow_length = max_diff*0.1
force_arrows = []
for key in self._loads['point_load']:
force_arrows.append(
{
'text': '',
'xy':(self._loads_position[key][0]+arrow_length*cos(rad(self._loads['point_load'][key][1])),\
self._loads_position[key][1] + arrow_length*sin(rad(self._loads['point_load'][key][1]))),
'xytext': (self._loads_position[key][0],self._loads_position[key][1]),
'arrowprops': {'width': 1, 'headlength':3, 'headwidth':3 , 'facecolor': 'black', }
}
)
mag = self._loads['point_load'][key][0]
force_arrows.append(
{
'text':f'{mag}N',
'xy': (self._loads_position[key][0]+arrow_length*1.6*cos(rad(self._loads['point_load'][key][1])),\
self._loads_position[key][1] + arrow_length*1.6*sin(rad(self._loads['point_load'][key][1]))),
}
)
return force_arrows
elif (order == 0):
x = symbols('x')
force_arrows = []
x_val = [self._left_support[0] + ((self._right_support[0]-self._left_support[0])/10)*i for i in range(1,10)]
for i in x_val:
force_arrows.append(
{
'text':'',
'xytext':(
i,
self._cable_eqn[0].subs(x,i)
),
'xy':(
i,
self._cable_eqn[1].subs(x,i)
),
'arrowprops':{'width':1, 'headlength':3.5, 'headwidth':3.5, 'facecolor':'black'}
}
)
mag = 0
for key in self._loads['distributed']:
mag += self._loads['distributed'][key]
force_arrows.append(
{
'text':f'{mag} N/m',
'xy':((self._left_support[0]+self._right_support[0])/2,self._lowest_y_global - max_diff*0.15)
}
)
return force_arrows
def plot_tension(self):
"""
Returns the diagram/plot of the tension generated in the cable at various points.
Examples
========
For point loads,
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(("A", 0, 10), ("B", 10, 10))
>>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270))
>>> c.apply_load(-1, ('X', 4, 6, 8, 270))
>>> c.solve()
>>> p = c.plot_tension()
>>> p
Plot object containing:
[0]: cartesian line: Piecewise((8.91403453669861, x <= 2), (4.79150773600774, x <= 4), (19*sqrt(13)/10, x <= 10)) for x over (0.0, 10.0)
>>> p.show()
For uniformly distributed loads,
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c=Cable(("A", 0, 40),("B", 100, 20))
>>> c.apply_load(0, ("X", 850))
>>> c.solve(58.58)
>>> p = c.plot_tension()
>>> p
Plot object containing:
[0]: cartesian line: 36465.0*sqrt(0.00054335718671383*X**2 + 1) for X over (0.0, 100.0)
>>> p.show()
"""
if len(self._loads_position) != 0:
x = symbols('x')
tension_plot = plot(self._tension_func, (x,self._left_support[0],self._right_support[0]), show=False)
else:
X = symbols('X')
tension_plot = plot(self._tension['distributed'], (X,self._left_support[0],self._right_support[0]), show=False)
return tension_plot