File size: 31,420 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
"""
This module can be used to solve problems related
to 2D Cables.
"""

from sympy.core.sympify import sympify
from sympy.core.symbol import Symbol,symbols
from sympy import sin, cos, pi, atan, diff, Piecewise, solve, rad
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.solvers.solveset import linsolve
from sympy.matrices import Matrix
from sympy.plotting import plot

class Cable:
    """
    Cables are structures in engineering that support
    the applied transverse loads through the tensile
    resistance developed in its members.

    Cables are widely used in suspension bridges, tension
    leg offshore platforms, transmission lines, and find
    use in several other engineering applications.

    Examples
    ========
    A cable is supported at (0, 10) and (10, 10). Two point loads
    acting vertically downwards act on the cable, one with magnitude 3 kN
    and acting 2 meters from the left support and 3 meters below it, while
    the other with magnitude 2 kN is 6 meters from the left support and
    6 meters below it.

    >>> from sympy.physics.continuum_mechanics.cable import Cable
    >>> c = Cable(('A', 0, 10), ('B', 10, 10))
    >>> c.apply_load(-1, ('P', 2, 7, 3, 270))
    >>> c.apply_load(-1, ('Q', 6, 4, 2, 270))
    >>> c.loads
    {'distributed': {}, 'point_load': {'P': [3, 270], 'Q': [2, 270]}}
    >>> c.loads_position
    {'P': [2, 7], 'Q': [6, 4]}
    """
    def __init__(self, support_1, support_2):
        """
        Initializes the class.

        Parameters
        ==========

        support_1 and support_2 are tuples of the form
        (label, x, y), where

        label : String or symbol
            The label of the support

        x : Sympifyable
            The x coordinate of the position of the support

        y : Sympifyable
            The y coordinate of the position of the support
        """
        self._left_support = []
        self._right_support = []
        self._supports = {}
        self._support_labels = []
        self._loads = {"distributed": {}, "point_load": {}}
        self._loads_position = {}
        self._length = 0
        self._reaction_loads = {}
        self._tension = {}
        self._lowest_x_global = sympify(0)
        self._lowest_y_global = sympify(0)
        self._cable_eqn = None
        self._tension_func = None
        if support_1[0] == support_2[0]:
            raise ValueError("Supports can not have the same label")

        elif support_1[1] == support_2[1]:
            raise ValueError("Supports can not be at the same location")

        x1 = sympify(support_1[1])
        y1 = sympify(support_1[2])
        self._supports[support_1[0]] = [x1, y1]

        x2 = sympify(support_2[1])
        y2 = sympify(support_2[2])
        self._supports[support_2[0]] = [x2, y2]

        if support_1[1] < support_2[1]:
            self._left_support.append(x1)
            self._left_support.append(y1)
            self._right_support.append(x2)
            self._right_support.append(y2)
            self._support_labels.append(support_1[0])
            self._support_labels.append(support_2[0])

        else:
            self._left_support.append(x2)
            self._left_support.append(y2)
            self._right_support.append(x1)
            self._right_support.append(y1)
            self._support_labels.append(support_2[0])
            self._support_labels.append(support_1[0])

        for i in self._support_labels:
            self._reaction_loads[Symbol("R_"+ i +"_x")] = 0
            self._reaction_loads[Symbol("R_"+ i +"_y")] = 0

    @property
    def supports(self):
        """
        Returns the supports of the cable along with their
        positions.
        """
        return self._supports

    @property
    def left_support(self):
        """
        Returns the position of the left support.
        """
        return self._left_support

    @property
    def right_support(self):
        """
        Returns the position of the right support.
        """
        return self._right_support

    @property
    def loads(self):
        """
        Returns the magnitude and direction of the loads
        acting on the cable.
        """
        return self._loads

    @property
    def loads_position(self):
        """
        Returns the position of the point loads acting on the
        cable.
        """
        return self._loads_position

    @property
    def length(self):
        """
        Returns the length of the cable.
        """
        return self._length

    @property
    def reaction_loads(self):
        """
        Returns the reaction forces at the supports, which are
        initialized to 0.
        """
        return self._reaction_loads

    @property
    def tension(self):
        """
        Returns the tension developed in the cable due to the loads
        applied.
        """
        return self._tension

    def tension_at(self, x):
        """
        Returns the tension at a given value of x developed due to
        distributed load.
        """
        if 'distributed' not in self._tension.keys():
            raise ValueError("No distributed load added or solve method not called")

        if x > self._right_support[0] or x < self._left_support[0]:
            raise ValueError("The value of x should be between the two supports")

        A = self._tension['distributed']
        X = Symbol('X')

        return A.subs({X:(x-self._lowest_x_global)})

    def apply_length(self, length):
        """
        This method specifies the length of the cable

        Parameters
        ==========

        length : Sympifyable
            The length of the cable

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(('A', 0, 10), ('B', 10, 10))
        >>> c.apply_length(20)
        >>> c.length
        20
        """
        dist = ((self._left_support[0] - self._right_support[0])**2
                - (self._left_support[1] - self._right_support[1])**2)**(1/2)

        if length < dist:
            raise ValueError("length should not be less than the distance between the supports")

        self._length = length

    def change_support(self, label, new_support):
        """
        This method changes the mentioned support with a new support.

        Parameters
        ==========
        label: String or symbol
            The label of the support to be changed

        new_support: Tuple of the form (new_label, x, y)
            new_label: String or symbol
                The label of the new support

            x: Sympifyable
                The x-coordinate of the position of the new support.

            y: Sympifyable
                The y-coordinate of the position of the new support.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(('A', 0, 10), ('B', 10, 10))
        >>> c.supports
        {'A': [0, 10], 'B': [10, 10]}
        >>> c.change_support('B', ('C', 5, 6))
        >>> c.supports
        {'A': [0, 10], 'C': [5, 6]}
        """
        if label not in self._supports:
            raise ValueError("No support exists with the given label")

        i = self._support_labels.index(label)
        rem_label = self._support_labels[(i+1)%2]
        x1 = self._supports[rem_label][0]
        y1 = self._supports[rem_label][1]

        x = sympify(new_support[1])
        y = sympify(new_support[2])

        for l in self._loads_position:
            if l[0] >= max(x, x1) or l[0] <= min(x, x1):
                raise ValueError("The change in support will throw an existing load out of range")

        self._supports.pop(label)
        self._left_support.clear()
        self._right_support.clear()
        self._reaction_loads.clear()
        self._support_labels.remove(label)

        self._supports[new_support[0]] = [x, y]

        if x1 < x:
            self._left_support.append(x1)
            self._left_support.append(y1)
            self._right_support.append(x)
            self._right_support.append(y)
            self._support_labels.append(new_support[0])

        else:
            self._left_support.append(x)
            self._left_support.append(y)
            self._right_support.append(x1)
            self._right_support.append(y1)
            self._support_labels.insert(0, new_support[0])

        for i in self._support_labels:
            self._reaction_loads[Symbol("R_"+ i +"_x")] = 0
            self._reaction_loads[Symbol("R_"+ i +"_y")] = 0

    def apply_load(self, order, load):
        """
        This method adds load to the cable.

        Parameters
        ==========

        order : Integer
            The order of the applied load.

                - For point loads, order = -1
                - For distributed load, order = 0

        load : tuple

            * For point loads, load is of the form (label, x, y, magnitude, direction), where:

            label : String or symbol
                The label of the load

            x : Sympifyable
                The x coordinate of the position of the load

            y : Sympifyable
                The y coordinate of the position of the load

            magnitude : Sympifyable
                The magnitude of the load. It must always be positive

            direction : Sympifyable
                The angle, in degrees, that the load vector makes with the horizontal
                in the counter-clockwise direction. It takes the values 0 to 360,
                inclusive.


            * For uniformly distributed load, load is of the form (label, magnitude)

            label : String or symbol
                The label of the load

            magnitude : Sympifyable
                The magnitude of the load. It must always be positive

        Examples
        ========

        For a point load of magnitude 12 units inclined at 30 degrees with the horizontal:

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(('A', 0, 10), ('B', 10, 10))
        >>> c.apply_load(-1, ('Z', 5, 5, 12, 30))
        >>> c.loads
        {'distributed': {}, 'point_load': {'Z': [12, 30]}}
        >>> c.loads_position
        {'Z': [5, 5]}


        For a uniformly distributed load of magnitude 9 units:

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(('A', 0, 10), ('B', 10, 10))
        >>> c.apply_load(0, ('X', 9))
        >>> c.loads
        {'distributed': {'X': 9}, 'point_load': {}}
        """
        if order == -1:
            if len(self._loads["distributed"]) != 0:
                raise ValueError("Distributed load already exists")

            label = load[0]
            if label in self._loads["point_load"]:
                raise ValueError("Label already exists")

            x = sympify(load[1])
            y = sympify(load[2])

            if x > self._right_support[0] or x < self._left_support[0]:
                raise ValueError("The load should be positioned between the supports")

            magnitude = sympify(load[3])
            direction = sympify(load[4])

            self._loads["point_load"][label] = [magnitude, direction]
            self._loads_position[label] = [x, y]

        elif order == 0:
            if len(self._loads_position) != 0:
                raise ValueError("Point load(s) already exist")

            label = load[0]
            if label in self._loads["distributed"]:
                raise ValueError("Label already exists")

            magnitude = sympify(load[1])

            self._loads["distributed"][label] = magnitude

        else:
            raise ValueError("Order should be either -1 or 0")

    def remove_loads(self, *args):
        """
        This methods removes the specified loads.

        Parameters
        ==========
        This input takes multiple label(s) as input
        label(s): String or symbol
            The label(s) of the loads to be removed.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(('A', 0, 10), ('B', 10, 10))
        >>> c.apply_load(-1, ('Z', 5, 5, 12, 30))
        >>> c.loads
        {'distributed': {}, 'point_load': {'Z': [12, 30]}}
        >>> c.remove_loads('Z')
        >>> c.loads
        {'distributed': {}, 'point_load': {}}
        """
        for i in args:
            if len(self._loads_position) == 0:
                if i not in self._loads['distributed']:
                    raise ValueError("Error removing load " + i + ": no such load exists")

                else:
                    self._loads['disrtibuted'].pop(i)

            else:
                if i not in self._loads['point_load']:
                    raise ValueError("Error removing load " + i + ": no such load exists")

                else:
                    self._loads['point_load'].pop(i)
                    self._loads_position.pop(i)

    def solve(self, *args):
        """
        This method solves for the reaction forces at the supports, the tension developed in
        the cable, and updates the length of the cable.

        Parameters
        ==========
        This method requires no input when solving for point loads
        For distributed load, the x and y coordinates of the lowest point of the cable are
        required as

        x: Sympifyable
            The x coordinate of the lowest point

        y: Sympifyable
            The y coordinate of the lowest point

        Examples
        ========
        For point loads,

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(("A", 0, 10), ("B", 10, 10))
        >>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270))
        >>> c.apply_load(-1, ('X', 4, 6, 8, 270))
        >>> c.solve()
        >>> c.tension
        {A_Z: 8.91403453669861, X_B: 19*sqrt(13)/10, Z_X: 4.79150773600774}
        >>> c.reaction_loads
        {R_A_x: -5.25547445255474, R_A_y: 7.2, R_B_x: 5.25547445255474, R_B_y: 3.8}
        >>> c.length
        5.7560958484519 + 2*sqrt(13)

        For distributed load,

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c=Cable(("A", 0, 40),("B", 100, 20))
        >>> c.apply_load(0, ("X", 850))
        >>> c.solve(58.58)
        >>> c.tension
        {'distributed': 36465.0*sqrt(0.00054335718671383*X**2 + 1)}
        >>> c.tension_at(0)
        61717.4130533677
        >>> c.reaction_loads
        {R_A_x: 36465.0, R_A_y: -49793.0, R_B_x: 44399.9537590861, R_B_y: 42868.2071025955}
        """

        if len(self._loads_position) != 0:
            sorted_position = sorted(self._loads_position.items(), key = lambda item : item[1][0])

            sorted_position.append(self._support_labels[1])
            sorted_position.insert(0, self._support_labels[0])

            self._tension.clear()
            moment_sum_from_left_support = 0
            moment_sum_from_right_support = 0
            F_x = 0
            F_y = 0
            self._length = 0
            tension_func = []
            x = symbols('x')
            for i in range(1, len(sorted_position)-1):
                if i == 1:
                    self._length+=sqrt((self._left_support[0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._left_support[1] - self._loads_position[sorted_position[i][0]][1])**2)

                else:
                    self._length+=sqrt((self._loads_position[sorted_position[i-1][0]][0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._loads_position[sorted_position[i-1][0]][1] - self._loads_position[sorted_position[i][0]][1])**2)

                if i == len(sorted_position)-2:
                    self._length+=sqrt((self._right_support[0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._right_support[1] - self._loads_position[sorted_position[i][0]][1])**2)

                moment_sum_from_left_support += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._left_support[1] - self._loads_position[sorted_position[i][0]][1])
                moment_sum_from_left_support += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._left_support[0] - self._loads_position[sorted_position[i][0]][0])

                F_x += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180)
                F_y += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180)

                label = Symbol(sorted_position[i][0]+"_"+sorted_position[i+1][0])
                y2 = self._loads_position[sorted_position[i][0]][1]
                x2 = self._loads_position[sorted_position[i][0]][0]
                y1 = 0
                x1 = 0

                if i == len(sorted_position)-2:
                    x1 = self._right_support[0]
                    y1 = self._right_support[1]

                else:
                    x1 = self._loads_position[sorted_position[i+1][0]][0]
                    y1 = self._loads_position[sorted_position[i+1][0]][1]

                angle_with_horizontal = atan((y1 - y2)/(x1 - x2))

                tension = -(moment_sum_from_left_support)/(abs(self._left_support[1] - self._loads_position[sorted_position[i][0]][1])*cos(angle_with_horizontal) + abs(self._left_support[0] - self._loads_position[sorted_position[i][0]][0])*sin(angle_with_horizontal))
                self._tension[label] = tension
                tension_func.append((tension, x<=x1))
                moment_sum_from_right_support += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._right_support[1] - self._loads_position[sorted_position[i][0]][1])
                moment_sum_from_right_support += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._right_support[0] - self._loads_position[sorted_position[i][0]][0])

            label = Symbol(sorted_position[0][0]+"_"+sorted_position[1][0])
            y2 = self._loads_position[sorted_position[1][0]][1]
            x2 = self._loads_position[sorted_position[1][0]][0]
            x1 = self._left_support[0]
            y1 = self._left_support[1]

            angle_with_horizontal = -atan((y2 - y1)/(x2 - x1))
            tension = -(moment_sum_from_right_support)/(abs(self._right_support[1] - self._loads_position[sorted_position[1][0]][1])*cos(angle_with_horizontal) + abs(self._right_support[0] - self._loads_position[sorted_position[1][0]][0])*sin(angle_with_horizontal))
            self._tension[label] = tension

            tension_func.insert(0,(tension, x<=x2))
            self._tension_func = Piecewise(*tension_func)
            angle_with_horizontal = pi/2 - angle_with_horizontal
            label = self._support_labels[0]
            self._reaction_loads[Symbol("R_"+label+"_x")] = -sin(angle_with_horizontal) * tension
            F_x += -sin(angle_with_horizontal) * tension
            self._reaction_loads[Symbol("R_"+label+"_y")] = cos(angle_with_horizontal) * tension
            F_y += cos(angle_with_horizontal) * tension

            label = self._support_labels[1]
            self._reaction_loads[Symbol("R_"+label+"_x")] = -F_x
            self._reaction_loads[Symbol("R_"+label+"_y")] = -F_y

        elif len(self._loads['distributed']) != 0 :

            if len(args) == 0:
                raise ValueError("Provide the lowest point of the cable")

            lowest_x = sympify(args[0])
            self._lowest_x_global = lowest_x

            a = Symbol('a', positive=True)
            c = Symbol('c')
            # augmented matrix form of linsolve

            M = Matrix(
                [[(self._left_support[0]-lowest_x)**2, 1, self._left_support[1]],
                [(self._right_support[0]-lowest_x)**2, 1, self._right_support[1]],
                ])

            coefficient_solution = list(linsolve(M, (a, c)))
            if len(coefficient_solution) ==0 or coefficient_solution[0][0]== 0:
                raise ValueError("The lowest point is inconsistent with the supports")

            A = coefficient_solution[0][0]
            C = coefficient_solution[0][1] + coefficient_solution[0][0]*lowest_x**2
            B = -2*coefficient_solution[0][0]*lowest_x
            self._lowest_y_global = coefficient_solution[0][1]
            lowest_y = self._lowest_y_global

            # y = A*x**2 + B*x + C
            # shifting origin to lowest point
            X = Symbol('X')
            Y = Symbol('Y')
            Y = A*(X + lowest_x)**2 + B*(X + lowest_x) + C - lowest_y

            temp_list = list(self._loads['distributed'].values())
            applied_force = temp_list[0]

            horizontal_force_constant = (applied_force * (self._right_support[0] - lowest_x)**2) / (2 * (self._right_support[1] - lowest_y))

            self._tension.clear()
            tangent_slope_to_curve = diff(Y, X)
            self._tension['distributed'] = horizontal_force_constant / (cos(atan(tangent_slope_to_curve)))

            label = self._support_labels[0]
            self._reaction_loads[Symbol("R_"+label+"_x")] = self.tension_at(self._left_support[0]) * cos(atan(tangent_slope_to_curve.subs(X, self._left_support[0] - lowest_x)))
            self._reaction_loads[Symbol("R_"+label+"_y")] = self.tension_at(self._left_support[0]) * sin(atan(tangent_slope_to_curve.subs(X, self._left_support[0] - lowest_x)))

            label = self._support_labels[1]
            self._reaction_loads[Symbol("R_"+label+"_x")] = self.tension_at(self._left_support[0]) * cos(atan(tangent_slope_to_curve.subs(X, self._right_support[0] - lowest_x)))
            self._reaction_loads[Symbol("R_"+label+"_y")] = self.tension_at(self._left_support[0]) * sin(atan(tangent_slope_to_curve.subs(X, self._right_support[0] - lowest_x)))

    def draw(self):
        """
        This method is used to obtain a plot for the specified cable with its supports,
        shape and loads.

        Examples
        ========

        For point loads,

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(("A", 0, 10), ("B", 10, 10))
        >>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270))
        >>> c.apply_load(-1, ('X', 4, 6, 8, 270))
        >>> c.solve()
        >>> p = c.draw()
        >>> p  # doctest: +ELLIPSIS
        Plot object containing:
        [0]: cartesian line: Piecewise((10 - 1.37*x, x <= 2), (8.52 - 0.63*x, x <= 4), (2*x/3 + 10/3, x <= 10)) for x over (0.0, 10.0)
        ...
        >>> p.show()

        For uniformly distributed loads,

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c=Cable(("A", 0, 40),("B", 100, 20))
        >>> c.apply_load(0, ("X", 850))
        >>> c.solve(58.58)
        >>> p = c.draw()
        >>> p # doctest: +ELLIPSIS
        Plot object containing:
        [0]: cartesian line: 0.0116550116550117*(x - 58.58)**2 + 0.00447086247086247 for x over (0.0, 100.0)
        [1]: cartesian line: -7.49552913752915 for x over (0.0, 100.0)
        ...
        >>> p.show()
        """
        x = Symbol("x")
        annotations = []
        support_rectangles = self._draw_supports()

        xy_min = min(self._left_support[0],self._lowest_y_global)
        xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
        max_diff = xy_max - xy_min
        if len(self._loads_position) != 0:
            self._cable_eqn = self._draw_cable(-1)
            annotations += self._draw_loads(-1)

        elif len(self._loads['distributed']) != 0 :
            self._cable_eqn = self._draw_cable(0)
            annotations += self._draw_loads(0)

        if not self._cable_eqn:
            raise ValueError("solve method not called and/or values provided for loads and supports not adequate")

        cab_plot = plot(*self._cable_eqn,(x,self._left_support[0],self._right_support[0]),
                        xlim=(xy_min-0.5*max_diff,xy_max+0.5*max_diff),
                        ylim=(xy_min-0.5*max_diff,xy_max+0.5*max_diff),
                        rectangles=support_rectangles,show= False,annotations=annotations, axis=False)

        return cab_plot

    def _draw_supports(self):
        member_rectangles = []
        xy_min = min(self._left_support[0],self._lowest_y_global)
        xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
        max_diff = xy_max - xy_min

        supp_width = 0.075*max_diff

        member_rectangles.append(
            {
                'xy': (self._left_support[0]-supp_width,self._left_support[1]),
                'width': supp_width,
                'height':supp_width,
                'color':'brown',
                'fill': False
            }
        )

        member_rectangles.append(
            {
                'xy': (self._right_support[0],self._right_support[1]),
                'width': supp_width,
                'height':supp_width,
                'color':'brown',
                'fill': False
            }
        )

        return member_rectangles

    def _draw_cable(self,order):
        xy_min = min(self._left_support[0],self._lowest_y_global)
        xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
        max_diff = xy_max - xy_min
        if order == -1 :
            x,y = symbols('x y')
            line_func = []
            sorted_position = sorted(self._loads_position.items(), key = lambda item : item[1][0])

            for i in range(len(sorted_position)):
                if(i==0):
                    y = ((sorted_position[i][1][1] - self._left_support[1])*(x-self._left_support[0]))/(sorted_position[i][1][0]- self._left_support[0]) + self._left_support[1]
                else:
                    y = ((sorted_position[i][1][1] - sorted_position[i-1][1][1] )*(x-sorted_position[i-1][1][0]))/(sorted_position[i][1][0]- sorted_position[i-1][1][0]) + sorted_position[i-1][1][1]
                line_func.append((y,x<=sorted_position[i][1][0]))

            y = ((sorted_position[len(sorted_position)-1][1][1] - self._right_support[1])*(x-self._right_support[0]))/(sorted_position[i][1][0]- self._right_support[0]) + self._right_support[1]
            line_func.append((y,x<=self._right_support[0]))
            return [Piecewise(*line_func)]

        elif order == 0:
            x0 = self._lowest_x_global
            diff_force_height = max_diff*0.075

            a,c,x,y = symbols('a c x y')
            parabola_eqn = a*(x-x0)**2 + c - y

            points = [(self._left_support[0],self._left_support[1]),(self._right_support[0],self._right_support[1])]
            equations = []
            for px, py in points:
                equations.append(parabola_eqn.subs({x: px, y: py}))
            solution = solve(equations, (a, c))
            parabola_eqn = solution[a]*(x-x0)**2 + solution[c]
            return [parabola_eqn, self._lowest_y_global - diff_force_height]

    def _draw_loads(self,order):
        xy_min = min(self._left_support[0],self._lowest_y_global)
        xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1]))
        max_diff = xy_max - xy_min
        if(order==-1):
            arrow_length = max_diff*0.1
            force_arrows = []
            for key in self._loads['point_load']:
                force_arrows.append(
                    {
                        'text': '',
                        'xy':(self._loads_position[key][0]+arrow_length*cos(rad(self._loads['point_load'][key][1])),\
                              self._loads_position[key][1] + arrow_length*sin(rad(self._loads['point_load'][key][1]))),
                        'xytext': (self._loads_position[key][0],self._loads_position[key][1]),
                        'arrowprops': {'width': 1, 'headlength':3, 'headwidth':3 , 'facecolor': 'black', }
                    }
                )
                mag = self._loads['point_load'][key][0]
                force_arrows.append(
                    {
                        'text':f'{mag}N',
                        'xy': (self._loads_position[key][0]+arrow_length*1.6*cos(rad(self._loads['point_load'][key][1])),\
                               self._loads_position[key][1] + arrow_length*1.6*sin(rad(self._loads['point_load'][key][1]))),
                    }
                )
            return force_arrows

        elif (order == 0):
            x = symbols('x')
            force_arrows = []
            x_val = [self._left_support[0] + ((self._right_support[0]-self._left_support[0])/10)*i for i in range(1,10)]
            for i in x_val:
                force_arrows.append(
                    {
                        'text':'',
                        'xytext':(
                            i,
                            self._cable_eqn[0].subs(x,i)
                        ),
                        'xy':(
                            i,
                            self._cable_eqn[1].subs(x,i)
                        ),
                        'arrowprops':{'width':1, 'headlength':3.5, 'headwidth':3.5, 'facecolor':'black'}
                    }
                )
            mag = 0
            for key in self._loads['distributed']:
                mag += self._loads['distributed'][key]

            force_arrows.append(
                {
                    'text':f'{mag} N/m',
                    'xy':((self._left_support[0]+self._right_support[0])/2,self._lowest_y_global - max_diff*0.15)
                }
            )
            return force_arrows

    def plot_tension(self):
        """
        Returns the diagram/plot of the tension generated in the cable at various points.

        Examples
        ========

        For point loads,

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c = Cable(("A", 0, 10), ("B", 10, 10))
        >>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270))
        >>> c.apply_load(-1, ('X', 4, 6, 8, 270))
        >>> c.solve()
        >>> p = c.plot_tension()
        >>> p
        Plot object containing:
        [0]: cartesian line: Piecewise((8.91403453669861, x <= 2), (4.79150773600774, x <= 4), (19*sqrt(13)/10, x <= 10)) for x over (0.0, 10.0)
        >>> p.show()

        For uniformly distributed loads,

        >>> from sympy.physics.continuum_mechanics.cable import Cable
        >>> c=Cable(("A", 0, 40),("B", 100, 20))
        >>> c.apply_load(0, ("X", 850))
        >>> c.solve(58.58)
        >>> p = c.plot_tension()
        >>> p
        Plot object containing:
        [0]: cartesian line: 36465.0*sqrt(0.00054335718671383*X**2 + 1) for X over (0.0, 100.0)
        >>> p.show()

        """
        if len(self._loads_position) != 0:
            x = symbols('x')
            tension_plot  = plot(self._tension_func, (x,self._left_support[0],self._right_support[0]), show=False)
        else:
            X = symbols('X')
            tension_plot  = plot(self._tension['distributed'], (X,self._left_support[0],self._right_support[0]), show=False)
        return tension_plot