jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
from math import exp, log
from sympy.core.random import _randint
from sympy.external.gmpy import bit_scan1, gcd, invert, sqrt as isqrt
from sympy.ntheory.factor_ import _perfect_power
from sympy.ntheory.primetest import isprime
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
class SievePolynomial:
def __init__(self, a, b, N):
"""This class denotes the sieve polynomial.
Provide methods to compute `(a*x + b)**2 - N` and
`a*x + b` when given `x`.
Parameters
==========
a : parameter of the sieve polynomial
b : parameter of the sieve polynomial
N : number to be factored
"""
self.a = a
self.b = b
self.a2 = a**2
self.ab = 2*a*b
self.b2 = b**2 - N
def eval_u(self, x):
return self.a*x + self.b
def eval_v(self, x):
return (self.a2*x + self.ab)*x + self.b2
class FactorBaseElem:
"""This class stores an element of the `factor_base`.
"""
def __init__(self, prime, tmem_p, log_p):
"""
Initialization of factor_base_elem.
Parameters
==========
prime : prime number of the factor_base
tmem_p : Integer square root of x**2 = n mod prime
log_p : Compute Natural Logarithm of the prime
"""
self.prime = prime
self.tmem_p = tmem_p
self.log_p = log_p
# `soln1` and `soln2` are solutions to
# the equation `(a*x + b)**2 - N = 0 (mod p)`.
self.soln1 = None
self.soln2 = None
self.b_ainv = None
def _generate_factor_base(prime_bound, n):
"""Generate `factor_base` for Quadratic Sieve. The `factor_base`
consists of all the points whose ``legendre_symbol(n, p) == 1``
and ``p < num_primes``. Along with the prime `factor_base` also stores
natural logarithm of prime and the residue n modulo p.
It also returns the of primes numbers in the `factor_base` which are
close to 1000 and 5000.
Parameters
==========
prime_bound : upper prime bound of the factor_base
n : integer to be factored
"""
from sympy.ntheory.generate import sieve
factor_base = []
idx_1000, idx_5000 = None, None
for prime in sieve.primerange(1, prime_bound):
if pow(n, (prime - 1) // 2, prime) == 1:
if prime > 1000 and idx_1000 is None:
idx_1000 = len(factor_base) - 1
if prime > 5000 and idx_5000 is None:
idx_5000 = len(factor_base) - 1
residue = _sqrt_mod_prime_power(n, prime, 1)[0]
log_p = round(log(prime)*2**10)
factor_base.append(FactorBaseElem(prime, residue, log_p))
return idx_1000, idx_5000, factor_base
def _generate_polynomial(N, M, factor_base, idx_1000, idx_5000, randint):
""" Generate sieve polynomials indefinitely.
Information such as `soln1` in the `factor_base` associated with
the polynomial is modified in place.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
idx_1000 : index of prime number in the factor_base near 1000
idx_5000 : index of prime number in the factor_base near to 5000
randint : A callable that takes two integers (a, b) and returns a random integer
n such that a <= n <= b, similar to `random.randint`.
"""
approx_val = log(2*N)/2 - log(M)
start = idx_1000 or 0
end = idx_5000 or (len(factor_base) - 1)
while True:
# Choose `a` that is close to `sqrt(2*N) / M`
best_a, best_q, best_ratio = None, None, None
for _ in range(50):
a = 1
q = []
while log(a) < approx_val:
rand_p = 0
while(rand_p == 0 or rand_p in q):
rand_p = randint(start, end)
p = factor_base[rand_p].prime
a *= p
q.append(rand_p)
ratio = exp(log(a) - approx_val)
if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
best_q = q
best_a = a
best_ratio = ratio
# Set `b` using the Chinese remainder theorem
a = best_a
q = best_q
B = []
for val in q:
q_l = factor_base[val].prime
gamma = factor_base[val].tmem_p * invert(a // q_l, q_l) % q_l
if 2*gamma > q_l:
gamma = q_l - gamma
B.append(a//q_l*gamma)
b = sum(B)
g = SievePolynomial(a, b, N)
for fb in factor_base:
if a % fb.prime == 0:
fb.soln1 = None
continue
a_inv = invert(a, fb.prime)
fb.b_ainv = [2*b_elem*a_inv % fb.prime for b_elem in B]
fb.soln1 = (a_inv*(fb.tmem_p - b)) % fb.prime
fb.soln2 = (a_inv*(-fb.tmem_p - b)) % fb.prime
yield g
# Update `b` with Gray code
for i in range(1, 2**(len(B)-1)):
v = bit_scan1(i)
neg_pow = 2*((i >> (v + 1)) % 2) - 1
b = g.b + 2*neg_pow*B[v]
a = g.a
g = SievePolynomial(a, b, N)
for fb in factor_base:
if fb.soln1 is None:
continue
fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v]) % fb.prime
fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v]) % fb.prime
yield g
def _gen_sieve_array(M, factor_base):
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that does not divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters
==========
M : sieve interval
factor_base : factor_base primes
"""
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array
def _check_smoothness(num, factor_base):
r""" Check if `num` is smooth with respect to the given `factor_base`
and compute its factorization vector.
Parameters
==========
num : integer whose smootheness is to be checked
factor_base : factor_base primes
"""
if num < 0:
num *= -1
vec = 1
else:
vec = 0
for i, fb in enumerate(factor_base, 1):
if num % fb.prime:
continue
e = 1
num //= fb.prime
while num % fb.prime == 0:
e += 1
num //= fb.prime
if e % 2:
vec += 1 << i
return vec, num
def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
"""Trial division stage. Here we trial divide the values generetated
by sieve_poly in the sieve interval and if it is a smooth number then
it is stored in `smooth_relations`. Moreover, if we find two partial relations
with same large prime then they are combined to form a smooth relation.
First we iterate over sieve array and look for values which are greater
than accumulated_val, as these values have a high chance of being smooth
number. Then using these values we find smooth relations.
In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
to form a smooth relation.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
sieve_array : stores log_p values
sieve_poly : polynomial from which we find smooth relations
partial_relations : stores partial relations with one large prime
ERROR_TERM : error term for accumulated_val
"""
accumulated_val = (log(M) + log(N)/2 - ERROR_TERM) * 2**10
smooth_relations = []
proper_factor = set()
partial_relation_upper_bound = 128*factor_base[-1].prime
for x, val in enumerate(sieve_array, -M):
if val < accumulated_val:
continue
v = sieve_poly.eval_v(x)
vec, num = _check_smoothness(v, factor_base)
if num == 1:
smooth_relations.append((sieve_poly.eval_u(x), v, vec))
elif num < partial_relation_upper_bound and isprime(num):
if N % num == 0:
proper_factor.add(num)
continue
u = sieve_poly.eval_u(x)
if num in partial_relations:
u_prev, v_prev, vec_prev = partial_relations.pop(num)
u = u*u_prev*invert(num, N) % N
v = v*v_prev // num**2
vec ^= vec_prev
smooth_relations.append((u, v, vec))
else:
partial_relations[num] = (u, v, vec)
return smooth_relations, proper_factor
def _find_factor(N, smooth_relations, col):
""" Finds proper factor of N using fast gaussian reduction for modulo 2 matrix.
Parameters
==========
N : Number to be factored
smooth_relations : Smooth relations vectors matrix
col : Number of columns in the matrix
Reference
==========
.. [1] A fast algorithm for gaussian elimination over GF(2) and
its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige
"""
matrix = [s_relation[2] for s_relation in smooth_relations]
row = len(matrix)
mark = [False] * row
for pos in range(col):
m = 1 << pos
for i in range(row):
if p := matrix[i] & m:
add_col = p ^ matrix[i]
matrix[i] = m
mark[i] = True
for j in range(i + 1, row):
if matrix[j] & m:
matrix[j] ^= add_col
break
for m, mat, rel in zip(mark, matrix, smooth_relations):
if m:
continue
u, v = rel[0], rel[1]
for m1, mat1, rel1 in zip(mark, matrix, smooth_relations):
if m1 and mat & mat1:
u *= rel1[0]
v *= rel1[1]
# assert is_square(v)
v = isqrt(v)
if 1 < (g := gcd(u - v, N)) < N:
yield g
def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
"""Performs factorization using Self-Initializing Quadratic Sieve.
In SIQS, let N be a number to be factored, and this N should not be a
perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
In order to find these integers X and Y we try to find relations of form
t**2 = u modN where u is a product of small primes. If we have enough of
these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.
Here, several optimizations are done like using multiple polynomials for
sieving, fast changing between polynomials and using partial relations.
The use of partial relations can speeds up the factoring by 2 times.
Parameters
==========
N : Number to be Factored
prime_bound : upper bound for primes in the factor base
M : Sieve Interval
ERROR_TERM : Error term for checking smoothness
seed : seed of random number generator
Returns
=======
set(int) : A set of factors of N without considering multiplicity.
Returns ``{N}`` if factorization fails.
Examples
========
>>> from sympy.ntheory import qs
>>> qs(25645121643901801, 2000, 10000)
{5394769, 4753701529}
>>> qs(9804659461513846513, 2000, 10000)
{4641991, 2112166839943}
See Also
========
qs_factor
References
==========
.. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
.. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
"""
return set(qs_factor(N, prime_bound, M, ERROR_TERM, seed))
def qs_factor(N, prime_bound, M, ERROR_TERM=25, seed=1234):
""" Performs factorization using Self-Initializing Quadratic Sieve.
Parameters
==========
N : Number to be Factored
prime_bound : upper bound for primes in the factor base
M : Sieve Interval
ERROR_TERM : Error term for checking smoothness
seed : seed of random number generator
Returns
=======
dict[int, int] : Factors of N.
Returns ``{N: 1}`` if factorization fails.
Note that the key is not always a prime number.
Examples
========
>>> from sympy.ntheory import qs_factor
>>> qs_factor(1009 * 100003, 2000, 10000)
{1009: 1, 100003: 1}
See Also
========
qs
"""
if N < 2:
raise ValueError("N should be greater than 1")
factors = {}
smooth_relations = []
partial_relations = {}
# Eliminate the possibility of even numbers,
# prime numbers, and perfect powers.
if N % 2 == 0:
e = 1
N //= 2
while N % 2 == 0:
N //= 2
e += 1
factors[2] = e
if isprime(N):
factors[N] = 1
return factors
if result := _perfect_power(N, 3):
n, e = result
factors[n] = e
return factors
N_copy = N
randint = _randint(seed)
idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
threshold = len(factor_base) * 105//100
for g in _generate_polynomial(N, M, factor_base, idx_1000, idx_5000, randint):
sieve_array = _gen_sieve_array(M, factor_base)
s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, g, partial_relations, ERROR_TERM)
smooth_relations += s_rel
for p in p_f:
if N_copy % p:
continue
e = 1
N_copy //= p
while N_copy % p == 0:
N_copy //= p
e += 1
factors[p] = e
if threshold <= len(smooth_relations):
break
for factor in _find_factor(N, smooth_relations, len(factor_base) + 1):
if N_copy % factor == 0:
e = 1
N_copy //= factor
while N_copy % factor == 0:
N_copy //= factor
e += 1
factors[factor] = e
if N_copy == 1 or isprime(N_copy):
break
if N_copy != 1:
factors[N_copy] = 1
return factors