File size: 14,938 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
from math import exp, log
from sympy.core.random import _randint
from sympy.external.gmpy import bit_scan1, gcd, invert, sqrt as isqrt
from sympy.ntheory.factor_ import _perfect_power
from sympy.ntheory.primetest import isprime
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
class SievePolynomial:
def __init__(self, a, b, N):
"""This class denotes the sieve polynomial.
Provide methods to compute `(a*x + b)**2 - N` and
`a*x + b` when given `x`.
Parameters
==========
a : parameter of the sieve polynomial
b : parameter of the sieve polynomial
N : number to be factored
"""
self.a = a
self.b = b
self.a2 = a**2
self.ab = 2*a*b
self.b2 = b**2 - N
def eval_u(self, x):
return self.a*x + self.b
def eval_v(self, x):
return (self.a2*x + self.ab)*x + self.b2
class FactorBaseElem:
"""This class stores an element of the `factor_base`.
"""
def __init__(self, prime, tmem_p, log_p):
"""
Initialization of factor_base_elem.
Parameters
==========
prime : prime number of the factor_base
tmem_p : Integer square root of x**2 = n mod prime
log_p : Compute Natural Logarithm of the prime
"""
self.prime = prime
self.tmem_p = tmem_p
self.log_p = log_p
# `soln1` and `soln2` are solutions to
# the equation `(a*x + b)**2 - N = 0 (mod p)`.
self.soln1 = None
self.soln2 = None
self.b_ainv = None
def _generate_factor_base(prime_bound, n):
"""Generate `factor_base` for Quadratic Sieve. The `factor_base`
consists of all the points whose ``legendre_symbol(n, p) == 1``
and ``p < num_primes``. Along with the prime `factor_base` also stores
natural logarithm of prime and the residue n modulo p.
It also returns the of primes numbers in the `factor_base` which are
close to 1000 and 5000.
Parameters
==========
prime_bound : upper prime bound of the factor_base
n : integer to be factored
"""
from sympy.ntheory.generate import sieve
factor_base = []
idx_1000, idx_5000 = None, None
for prime in sieve.primerange(1, prime_bound):
if pow(n, (prime - 1) // 2, prime) == 1:
if prime > 1000 and idx_1000 is None:
idx_1000 = len(factor_base) - 1
if prime > 5000 and idx_5000 is None:
idx_5000 = len(factor_base) - 1
residue = _sqrt_mod_prime_power(n, prime, 1)[0]
log_p = round(log(prime)*2**10)
factor_base.append(FactorBaseElem(prime, residue, log_p))
return idx_1000, idx_5000, factor_base
def _generate_polynomial(N, M, factor_base, idx_1000, idx_5000, randint):
""" Generate sieve polynomials indefinitely.
Information such as `soln1` in the `factor_base` associated with
the polynomial is modified in place.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
idx_1000 : index of prime number in the factor_base near 1000
idx_5000 : index of prime number in the factor_base near to 5000
randint : A callable that takes two integers (a, b) and returns a random integer
n such that a <= n <= b, similar to `random.randint`.
"""
approx_val = log(2*N)/2 - log(M)
start = idx_1000 or 0
end = idx_5000 or (len(factor_base) - 1)
while True:
# Choose `a` that is close to `sqrt(2*N) / M`
best_a, best_q, best_ratio = None, None, None
for _ in range(50):
a = 1
q = []
while log(a) < approx_val:
rand_p = 0
while(rand_p == 0 or rand_p in q):
rand_p = randint(start, end)
p = factor_base[rand_p].prime
a *= p
q.append(rand_p)
ratio = exp(log(a) - approx_val)
if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
best_q = q
best_a = a
best_ratio = ratio
# Set `b` using the Chinese remainder theorem
a = best_a
q = best_q
B = []
for val in q:
q_l = factor_base[val].prime
gamma = factor_base[val].tmem_p * invert(a // q_l, q_l) % q_l
if 2*gamma > q_l:
gamma = q_l - gamma
B.append(a//q_l*gamma)
b = sum(B)
g = SievePolynomial(a, b, N)
for fb in factor_base:
if a % fb.prime == 0:
fb.soln1 = None
continue
a_inv = invert(a, fb.prime)
fb.b_ainv = [2*b_elem*a_inv % fb.prime for b_elem in B]
fb.soln1 = (a_inv*(fb.tmem_p - b)) % fb.prime
fb.soln2 = (a_inv*(-fb.tmem_p - b)) % fb.prime
yield g
# Update `b` with Gray code
for i in range(1, 2**(len(B)-1)):
v = bit_scan1(i)
neg_pow = 2*((i >> (v + 1)) % 2) - 1
b = g.b + 2*neg_pow*B[v]
a = g.a
g = SievePolynomial(a, b, N)
for fb in factor_base:
if fb.soln1 is None:
continue
fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v]) % fb.prime
fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v]) % fb.prime
yield g
def _gen_sieve_array(M, factor_base):
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that does not divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters
==========
M : sieve interval
factor_base : factor_base primes
"""
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array
def _check_smoothness(num, factor_base):
r""" Check if `num` is smooth with respect to the given `factor_base`
and compute its factorization vector.
Parameters
==========
num : integer whose smootheness is to be checked
factor_base : factor_base primes
"""
if num < 0:
num *= -1
vec = 1
else:
vec = 0
for i, fb in enumerate(factor_base, 1):
if num % fb.prime:
continue
e = 1
num //= fb.prime
while num % fb.prime == 0:
e += 1
num //= fb.prime
if e % 2:
vec += 1 << i
return vec, num
def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
"""Trial division stage. Here we trial divide the values generetated
by sieve_poly in the sieve interval and if it is a smooth number then
it is stored in `smooth_relations`. Moreover, if we find two partial relations
with same large prime then they are combined to form a smooth relation.
First we iterate over sieve array and look for values which are greater
than accumulated_val, as these values have a high chance of being smooth
number. Then using these values we find smooth relations.
In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
to form a smooth relation.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
sieve_array : stores log_p values
sieve_poly : polynomial from which we find smooth relations
partial_relations : stores partial relations with one large prime
ERROR_TERM : error term for accumulated_val
"""
accumulated_val = (log(M) + log(N)/2 - ERROR_TERM) * 2**10
smooth_relations = []
proper_factor = set()
partial_relation_upper_bound = 128*factor_base[-1].prime
for x, val in enumerate(sieve_array, -M):
if val < accumulated_val:
continue
v = sieve_poly.eval_v(x)
vec, num = _check_smoothness(v, factor_base)
if num == 1:
smooth_relations.append((sieve_poly.eval_u(x), v, vec))
elif num < partial_relation_upper_bound and isprime(num):
if N % num == 0:
proper_factor.add(num)
continue
u = sieve_poly.eval_u(x)
if num in partial_relations:
u_prev, v_prev, vec_prev = partial_relations.pop(num)
u = u*u_prev*invert(num, N) % N
v = v*v_prev // num**2
vec ^= vec_prev
smooth_relations.append((u, v, vec))
else:
partial_relations[num] = (u, v, vec)
return smooth_relations, proper_factor
def _find_factor(N, smooth_relations, col):
""" Finds proper factor of N using fast gaussian reduction for modulo 2 matrix.
Parameters
==========
N : Number to be factored
smooth_relations : Smooth relations vectors matrix
col : Number of columns in the matrix
Reference
==========
.. [1] A fast algorithm for gaussian elimination over GF(2) and
its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige
"""
matrix = [s_relation[2] for s_relation in smooth_relations]
row = len(matrix)
mark = [False] * row
for pos in range(col):
m = 1 << pos
for i in range(row):
if p := matrix[i] & m:
add_col = p ^ matrix[i]
matrix[i] = m
mark[i] = True
for j in range(i + 1, row):
if matrix[j] & m:
matrix[j] ^= add_col
break
for m, mat, rel in zip(mark, matrix, smooth_relations):
if m:
continue
u, v = rel[0], rel[1]
for m1, mat1, rel1 in zip(mark, matrix, smooth_relations):
if m1 and mat & mat1:
u *= rel1[0]
v *= rel1[1]
# assert is_square(v)
v = isqrt(v)
if 1 < (g := gcd(u - v, N)) < N:
yield g
def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
"""Performs factorization using Self-Initializing Quadratic Sieve.
In SIQS, let N be a number to be factored, and this N should not be a
perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
In order to find these integers X and Y we try to find relations of form
t**2 = u modN where u is a product of small primes. If we have enough of
these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.
Here, several optimizations are done like using multiple polynomials for
sieving, fast changing between polynomials and using partial relations.
The use of partial relations can speeds up the factoring by 2 times.
Parameters
==========
N : Number to be Factored
prime_bound : upper bound for primes in the factor base
M : Sieve Interval
ERROR_TERM : Error term for checking smoothness
seed : seed of random number generator
Returns
=======
set(int) : A set of factors of N without considering multiplicity.
Returns ``{N}`` if factorization fails.
Examples
========
>>> from sympy.ntheory import qs
>>> qs(25645121643901801, 2000, 10000)
{5394769, 4753701529}
>>> qs(9804659461513846513, 2000, 10000)
{4641991, 2112166839943}
See Also
========
qs_factor
References
==========
.. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
.. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
"""
return set(qs_factor(N, prime_bound, M, ERROR_TERM, seed))
def qs_factor(N, prime_bound, M, ERROR_TERM=25, seed=1234):
""" Performs factorization using Self-Initializing Quadratic Sieve.
Parameters
==========
N : Number to be Factored
prime_bound : upper bound for primes in the factor base
M : Sieve Interval
ERROR_TERM : Error term for checking smoothness
seed : seed of random number generator
Returns
=======
dict[int, int] : Factors of N.
Returns ``{N: 1}`` if factorization fails.
Note that the key is not always a prime number.
Examples
========
>>> from sympy.ntheory import qs_factor
>>> qs_factor(1009 * 100003, 2000, 10000)
{1009: 1, 100003: 1}
See Also
========
qs
"""
if N < 2:
raise ValueError("N should be greater than 1")
factors = {}
smooth_relations = []
partial_relations = {}
# Eliminate the possibility of even numbers,
# prime numbers, and perfect powers.
if N % 2 == 0:
e = 1
N //= 2
while N % 2 == 0:
N //= 2
e += 1
factors[2] = e
if isprime(N):
factors[N] = 1
return factors
if result := _perfect_power(N, 3):
n, e = result
factors[n] = e
return factors
N_copy = N
randint = _randint(seed)
idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
threshold = len(factor_base) * 105//100
for g in _generate_polynomial(N, M, factor_base, idx_1000, idx_5000, randint):
sieve_array = _gen_sieve_array(M, factor_base)
s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, g, partial_relations, ERROR_TERM)
smooth_relations += s_rel
for p in p_f:
if N_copy % p:
continue
e = 1
N_copy //= p
while N_copy % p == 0:
N_copy //= p
e += 1
factors[p] = e
if threshold <= len(smooth_relations):
break
for factor in _find_factor(N, smooth_relations, len(factor_base) + 1):
if N_copy % factor == 0:
e = 1
N_copy //= factor
while N_copy % factor == 0:
N_copy //= factor
e += 1
factors[factor] = e
if N_copy == 1 or isprime(N_copy):
break
if N_copy != 1:
factors[N_copy] = 1
return factors
|