File size: 14,938 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
from math import exp, log
from sympy.core.random import _randint
from sympy.external.gmpy import bit_scan1, gcd, invert, sqrt as isqrt
from sympy.ntheory.factor_ import _perfect_power
from sympy.ntheory.primetest import isprime
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power


class SievePolynomial:
    def __init__(self, a, b, N):
        """This class denotes the sieve polynomial.
        Provide methods to compute `(a*x + b)**2 - N` and
        `a*x + b` when given `x`.

        Parameters
        ==========

        a : parameter of the sieve polynomial
        b : parameter of the sieve polynomial
        N : number to be factored

        """
        self.a = a
        self.b = b
        self.a2 = a**2
        self.ab = 2*a*b
        self.b2 = b**2 - N

    def eval_u(self, x):
        return self.a*x + self.b

    def eval_v(self, x):
        return (self.a2*x + self.ab)*x + self.b2


class FactorBaseElem:
    """This class stores an element of the `factor_base`.
    """
    def __init__(self, prime, tmem_p, log_p):
        """
        Initialization of factor_base_elem.

        Parameters
        ==========

        prime : prime number of the factor_base
        tmem_p : Integer square root of x**2 = n mod prime
        log_p : Compute Natural Logarithm of the prime
        """
        self.prime = prime
        self.tmem_p = tmem_p
        self.log_p = log_p
        # `soln1` and `soln2` are solutions to
        # the equation `(a*x + b)**2 - N = 0 (mod p)`.
        self.soln1 = None
        self.soln2 = None
        self.b_ainv = None


def _generate_factor_base(prime_bound, n):
    """Generate `factor_base` for Quadratic Sieve. The `factor_base`
    consists of all the points whose ``legendre_symbol(n, p) == 1``
    and ``p < num_primes``. Along with the prime `factor_base` also stores
    natural logarithm of prime and the residue n modulo p.
    It also returns the of primes numbers in the `factor_base` which are
    close to 1000 and 5000.

    Parameters
    ==========

    prime_bound : upper prime bound of the factor_base
    n : integer to be factored
    """
    from sympy.ntheory.generate import sieve
    factor_base = []
    idx_1000, idx_5000 = None, None
    for prime in sieve.primerange(1, prime_bound):
        if pow(n, (prime - 1) // 2, prime) == 1:
            if prime > 1000 and idx_1000 is None:
                idx_1000 = len(factor_base) - 1
            if prime > 5000 and idx_5000 is None:
                idx_5000 = len(factor_base) - 1
            residue = _sqrt_mod_prime_power(n, prime, 1)[0]
            log_p = round(log(prime)*2**10)
            factor_base.append(FactorBaseElem(prime, residue, log_p))
    return idx_1000, idx_5000, factor_base


def _generate_polynomial(N, M, factor_base, idx_1000, idx_5000, randint):
    """ Generate sieve polynomials indefinitely.
    Information such as `soln1` in the `factor_base` associated with
    the polynomial is modified in place.

    Parameters
    ==========

    N : Number to be factored
    M : sieve interval
    factor_base : factor_base primes
    idx_1000 : index of prime number in the factor_base near 1000
    idx_5000 : index of prime number in the factor_base near to 5000
    randint : A callable that takes two integers (a, b) and returns a random integer
              n such that a <= n <= b, similar to `random.randint`.
    """
    approx_val = log(2*N)/2 - log(M)
    start = idx_1000 or 0
    end = idx_5000 or (len(factor_base) - 1)
    while True:
        # Choose `a` that is close to `sqrt(2*N) / M`
        best_a, best_q, best_ratio = None, None, None
        for _ in range(50):
            a = 1
            q = []
            while log(a) < approx_val:
                rand_p = 0
                while(rand_p == 0 or rand_p in q):
                    rand_p = randint(start, end)
                p = factor_base[rand_p].prime
                a *= p
                q.append(rand_p)
            ratio = exp(log(a) - approx_val)
            if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
                best_q = q
                best_a = a
                best_ratio = ratio

        # Set `b` using the Chinese remainder theorem
        a = best_a
        q = best_q
        B = []
        for val in q:
            q_l = factor_base[val].prime
            gamma = factor_base[val].tmem_p * invert(a // q_l, q_l) % q_l
            if 2*gamma > q_l:
                gamma = q_l - gamma
            B.append(a//q_l*gamma)
        b = sum(B)
        g = SievePolynomial(a, b, N)
        for fb in factor_base:
            if a % fb.prime == 0:
                fb.soln1 = None
                continue
            a_inv = invert(a, fb.prime)
            fb.b_ainv = [2*b_elem*a_inv % fb.prime for b_elem in B]
            fb.soln1 = (a_inv*(fb.tmem_p - b)) % fb.prime
            fb.soln2 = (a_inv*(-fb.tmem_p - b)) % fb.prime
        yield g

        # Update `b` with Gray code
        for i in range(1, 2**(len(B)-1)):
            v = bit_scan1(i)
            neg_pow = 2*((i >> (v + 1)) % 2) - 1
            b = g.b + 2*neg_pow*B[v]
            a = g.a
            g = SievePolynomial(a, b, N)
            for fb in factor_base:
                if fb.soln1 is None:
                    continue
                fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v]) % fb.prime
                fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v]) % fb.prime
            yield g


def _gen_sieve_array(M, factor_base):
    """Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
    that does not divide the coefficient `a` we add log_p over the sieve_array
    such that ``-M <= soln1 + i*p <=  M`` and ``-M <= soln2 + i*p <=  M`` where `i`
    is an integer. When p = 2 then log_p is only added using
    ``-M <= soln1 + i*p <=  M``.

    Parameters
    ==========

    M : sieve interval
    factor_base : factor_base primes
    """
    sieve_array = [0]*(2*M + 1)
    for factor in factor_base:
        if factor.soln1 is None: #The prime does not divides a
            continue
        for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
            sieve_array[idx] += factor.log_p
        if factor.prime == 2:
            continue
        #if prime is 2 then sieve only with soln_1_p
        for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
            sieve_array[idx] += factor.log_p
    return sieve_array


def _check_smoothness(num, factor_base):
    r""" Check if `num` is smooth with respect to the given `factor_base`
    and compute its factorization vector.

    Parameters
    ==========

    num : integer whose smootheness is to be checked
    factor_base : factor_base primes
    """
    if num < 0:
        num *= -1
        vec = 1
    else:
        vec = 0
    for i, fb in enumerate(factor_base, 1):
        if num % fb.prime:
            continue
        e = 1
        num //= fb.prime
        while num % fb.prime == 0:
            e += 1
            num //= fb.prime
        if e % 2:
            vec += 1 << i
    return vec, num


def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
    """Trial division stage. Here we trial divide the values generetated
    by sieve_poly in the sieve interval and if it is a smooth number then
    it is stored in `smooth_relations`. Moreover, if we find two partial relations
    with same large prime then they are combined to form a smooth relation.
    First we iterate over sieve array and look for values which are greater
    than accumulated_val, as these values have a high chance of being smooth
    number. Then using these values we find smooth relations.
    In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
    with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
    to form a smooth relation.

    Parameters
    ==========

    N : Number to be factored
    M : sieve interval
    factor_base : factor_base primes
    sieve_array : stores log_p values
    sieve_poly : polynomial from which we find smooth relations
    partial_relations : stores partial relations with one large prime
    ERROR_TERM : error term for accumulated_val
    """
    accumulated_val = (log(M) + log(N)/2 - ERROR_TERM) * 2**10
    smooth_relations = []
    proper_factor = set()
    partial_relation_upper_bound = 128*factor_base[-1].prime
    for x, val in enumerate(sieve_array, -M):
        if val < accumulated_val:
            continue
        v = sieve_poly.eval_v(x)
        vec, num = _check_smoothness(v, factor_base)
        if num == 1:
            smooth_relations.append((sieve_poly.eval_u(x), v, vec))
        elif num < partial_relation_upper_bound and isprime(num):
            if N % num == 0:
                proper_factor.add(num)
                continue
            u = sieve_poly.eval_u(x)
            if num in partial_relations:
                u_prev, v_prev, vec_prev = partial_relations.pop(num)
                u = u*u_prev*invert(num, N) % N
                v = v*v_prev // num**2
                vec ^= vec_prev
                smooth_relations.append((u, v, vec))
            else:
                partial_relations[num] = (u, v, vec)
    return smooth_relations, proper_factor


def _find_factor(N, smooth_relations, col):
    """ Finds proper factor of N using fast gaussian reduction for modulo 2 matrix.

    Parameters
    ==========

    N : Number to be factored
    smooth_relations : Smooth relations vectors matrix
    col : Number of columns in the matrix

    Reference
    ==========

    .. [1] A fast algorithm for gaussian elimination over GF(2) and
    its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige
    """
    matrix = [s_relation[2] for s_relation in smooth_relations]
    row = len(matrix)
    mark = [False] * row
    for pos in range(col):
        m = 1 << pos
        for i in range(row):
            if p := matrix[i] & m:
                add_col = p ^ matrix[i]
                matrix[i] = m
                mark[i] = True
                for j in range(i + 1, row):
                    if matrix[j] & m:
                        matrix[j] ^= add_col
                break

    for m, mat, rel in zip(mark, matrix, smooth_relations):
        if m:
            continue
        u, v = rel[0], rel[1]
        for m1, mat1, rel1 in zip(mark, matrix, smooth_relations):
            if m1 and mat & mat1:
                u *= rel1[0]
                v *= rel1[1]
        # assert is_square(v)
        v = isqrt(v)
        if 1 < (g := gcd(u - v, N)) < N:
            yield g


def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
    """Performs factorization using Self-Initializing Quadratic Sieve.
    In SIQS, let N be a number to be factored, and this N should not be a
    perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
    ``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
    In order to find these integers X and Y we try to find relations of form
    t**2 = u modN where u is a product of small primes. If we have enough of
    these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
    the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.

    Here, several optimizations are done like using multiple polynomials for
    sieving, fast changing between polynomials and using partial relations.
    The use of partial relations can speeds up the factoring by 2 times.

    Parameters
    ==========

    N : Number to be Factored
    prime_bound : upper bound for primes in the factor base
    M : Sieve Interval
    ERROR_TERM : Error term for checking smoothness
    seed : seed of random number generator

    Returns
    =======

    set(int) : A set of factors of N without considering multiplicity.
               Returns ``{N}`` if factorization fails.

    Examples
    ========

    >>> from sympy.ntheory import qs
    >>> qs(25645121643901801, 2000, 10000)
    {5394769, 4753701529}
    >>> qs(9804659461513846513, 2000, 10000)
    {4641991, 2112166839943}

    See Also
    ========

    qs_factor

    References
    ==========

    .. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
    .. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
    """
    return set(qs_factor(N, prime_bound, M, ERROR_TERM, seed))


def qs_factor(N, prime_bound, M, ERROR_TERM=25, seed=1234):
    """ Performs factorization using Self-Initializing Quadratic Sieve.

    Parameters
    ==========

    N : Number to be Factored
    prime_bound : upper bound for primes in the factor base
    M : Sieve Interval
    ERROR_TERM : Error term for checking smoothness
    seed : seed of random number generator

    Returns
    =======

    dict[int, int] : Factors of N.
                     Returns ``{N: 1}`` if factorization fails.
                     Note that the key is not always a prime number.

    Examples
    ========

    >>> from sympy.ntheory import qs_factor
    >>> qs_factor(1009 * 100003, 2000, 10000)
    {1009: 1, 100003: 1}

    See Also
    ========

    qs

    """
    if N < 2:
        raise ValueError("N should be greater than 1")
    factors = {}
    smooth_relations = []
    partial_relations = {}
    # Eliminate the possibility of even numbers,
    # prime numbers, and perfect powers.
    if N % 2 == 0:
        e = 1
        N //= 2
        while N % 2 == 0:
            N //= 2
            e += 1
        factors[2] = e
    if isprime(N):
        factors[N] = 1
        return factors
    if result := _perfect_power(N, 3):
        n, e = result
        factors[n] = e
        return factors
    N_copy = N
    randint = _randint(seed)
    idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
    threshold = len(factor_base) * 105//100
    for g in _generate_polynomial(N, M, factor_base, idx_1000, idx_5000, randint):
        sieve_array = _gen_sieve_array(M, factor_base)
        s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, g, partial_relations, ERROR_TERM)
        smooth_relations += s_rel
        for p in p_f:
            if N_copy % p:
                continue
            e = 1
            N_copy //= p
            while N_copy % p == 0:
                N_copy //= p
                e += 1
            factors[p] = e
        if threshold <= len(smooth_relations):
            break

    for factor in _find_factor(N, smooth_relations, len(factor_base) + 1):
        if N_copy % factor == 0:
            e = 1
            N_copy //= factor
            while N_copy % factor == 0:
                N_copy //= factor
                e += 1
            factors[factor] = e
            if N_copy == 1 or isprime(N_copy):
                break
    if N_copy != 1:
        factors[N_copy] = 1
    return factors