|
|
|
|
|
from .cartan_type import CartanType |
|
from mpmath import fac |
|
from sympy.core.backend import Matrix, eye, Rational, igcd |
|
from sympy.core.basic import Atom |
|
|
|
class WeylGroup(Atom): |
|
|
|
""" |
|
For each semisimple Lie group, we have a Weyl group. It is a subgroup of |
|
the isometry group of the root system. Specifically, it's the subgroup |
|
that is generated by reflections through the hyperplanes orthogonal to |
|
the roots. Therefore, Weyl groups are reflection groups, and so a Weyl |
|
group is a finite Coxeter group. |
|
|
|
""" |
|
|
|
def __new__(cls, cartantype): |
|
obj = Atom.__new__(cls) |
|
obj.cartan_type = CartanType(cartantype) |
|
return obj |
|
|
|
def generators(self): |
|
""" |
|
This method creates the generating reflections of the Weyl group for |
|
a given Lie algebra. For a Lie algebra of rank n, there are n |
|
different generating reflections. This function returns them as |
|
a list. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.liealgebras.weyl_group import WeylGroup |
|
>>> c = WeylGroup("F4") |
|
>>> c.generators() |
|
['r1', 'r2', 'r3', 'r4'] |
|
""" |
|
n = self.cartan_type.rank() |
|
generators = [] |
|
for i in range(1, n+1): |
|
reflection = "r"+str(i) |
|
generators.append(reflection) |
|
return generators |
|
|
|
def group_order(self): |
|
""" |
|
This method returns the order of the Weyl group. |
|
For types A, B, C, D, and E the order depends on |
|
the rank of the Lie algebra. For types F and G, |
|
the order is fixed. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.liealgebras.weyl_group import WeylGroup |
|
>>> c = WeylGroup("D4") |
|
>>> c.group_order() |
|
192.0 |
|
""" |
|
n = self.cartan_type.rank() |
|
if self.cartan_type.series == "A": |
|
return fac(n+1) |
|
|
|
if self.cartan_type.series in ("B", "C"): |
|
return fac(n)*(2**n) |
|
|
|
if self.cartan_type.series == "D": |
|
return fac(n)*(2**(n-1)) |
|
|
|
if self.cartan_type.series == "E": |
|
if n == 6: |
|
return 51840 |
|
if n == 7: |
|
return 2903040 |
|
if n == 8: |
|
return 696729600 |
|
if self.cartan_type.series == "F": |
|
return 1152 |
|
|
|
if self.cartan_type.series == "G": |
|
return 12 |
|
|
|
def group_name(self): |
|
""" |
|
This method returns some general information about the Weyl group for |
|
a given Lie algebra. It returns the name of the group and the elements |
|
it acts on, if relevant. |
|
""" |
|
n = self.cartan_type.rank() |
|
if self.cartan_type.series == "A": |
|
return "S"+str(n+1) + ": the symmetric group acting on " + str(n+1) + " elements." |
|
|
|
if self.cartan_type.series in ("B", "C"): |
|
return "The hyperoctahedral group acting on " + str(2*n) + " elements." |
|
|
|
if self.cartan_type.series == "D": |
|
return "The symmetry group of the " + str(n) + "-dimensional demihypercube." |
|
|
|
if self.cartan_type.series == "E": |
|
if n == 6: |
|
return "The symmetry group of the 6-polytope." |
|
|
|
if n == 7: |
|
return "The symmetry group of the 7-polytope." |
|
|
|
if n == 8: |
|
return "The symmetry group of the 8-polytope." |
|
|
|
if self.cartan_type.series == "F": |
|
return "The symmetry group of the 24-cell, or icositetrachoron." |
|
|
|
if self.cartan_type.series == "G": |
|
return "D6, the dihedral group of order 12, and symmetry group of the hexagon." |
|
|
|
def element_order(self, weylelt): |
|
""" |
|
This method returns the order of a given Weyl group element, which should |
|
be specified by the user in the form of products of the generating |
|
reflections, i.e. of the form r1*r2 etc. |
|
|
|
For types A-F, this method current works by taking the matrix form of |
|
the specified element, and then finding what power of the matrix is the |
|
identity. It then returns this power. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.liealgebras.weyl_group import WeylGroup |
|
>>> b = WeylGroup("B4") |
|
>>> b.element_order('r1*r4*r2') |
|
4 |
|
""" |
|
n = self.cartan_type.rank() |
|
if self.cartan_type.series == "A": |
|
a = self.matrix_form(weylelt) |
|
order = 1 |
|
while a != eye(n+1): |
|
a *= self.matrix_form(weylelt) |
|
order += 1 |
|
return order |
|
|
|
if self.cartan_type.series == "D": |
|
a = self.matrix_form(weylelt) |
|
order = 1 |
|
while a != eye(n): |
|
a *= self.matrix_form(weylelt) |
|
order += 1 |
|
return order |
|
|
|
if self.cartan_type.series == "E": |
|
a = self.matrix_form(weylelt) |
|
order = 1 |
|
while a != eye(8): |
|
a *= self.matrix_form(weylelt) |
|
order += 1 |
|
return order |
|
|
|
if self.cartan_type.series == "G": |
|
elts = list(weylelt) |
|
reflections = elts[1::3] |
|
m = self.delete_doubles(reflections) |
|
while self.delete_doubles(m) != m: |
|
m = self.delete_doubles(m) |
|
reflections = m |
|
if len(reflections) % 2 == 1: |
|
return 2 |
|
|
|
elif len(reflections) == 0: |
|
return 1 |
|
|
|
else: |
|
if len(reflections) == 1: |
|
return 2 |
|
else: |
|
m = len(reflections) // 2 |
|
lcm = (6 * m)/ igcd(m, 6) |
|
order = lcm / m |
|
return order |
|
|
|
|
|
if self.cartan_type.series == 'F': |
|
a = self.matrix_form(weylelt) |
|
order = 1 |
|
while a != eye(4): |
|
a *= self.matrix_form(weylelt) |
|
order += 1 |
|
return order |
|
|
|
|
|
if self.cartan_type.series in ("B", "C"): |
|
a = self.matrix_form(weylelt) |
|
order = 1 |
|
while a != eye(n): |
|
a *= self.matrix_form(weylelt) |
|
order += 1 |
|
return order |
|
|
|
def delete_doubles(self, reflections): |
|
""" |
|
This is a helper method for determining the order of an element in the |
|
Weyl group of G2. It takes a Weyl element and if repeated simple reflections |
|
in it, it deletes them. |
|
""" |
|
counter = 0 |
|
copy = list(reflections) |
|
for elt in copy: |
|
if counter < len(copy)-1: |
|
if copy[counter + 1] == elt: |
|
del copy[counter] |
|
del copy[counter] |
|
counter += 1 |
|
|
|
|
|
return copy |
|
|
|
|
|
def matrix_form(self, weylelt): |
|
""" |
|
This method takes input from the user in the form of products of the |
|
generating reflections, and returns the matrix corresponding to the |
|
element of the Weyl group. Since each element of the Weyl group is |
|
a reflection of some type, there is a corresponding matrix representation. |
|
This method uses the standard representation for all the generating |
|
reflections. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.liealgebras.weyl_group import WeylGroup |
|
>>> f = WeylGroup("F4") |
|
>>> f.matrix_form('r2*r3') |
|
Matrix([ |
|
[1, 0, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 0, 0, -1], |
|
[0, 0, 1, 0]]) |
|
|
|
""" |
|
elts = list(weylelt) |
|
reflections = elts[1::3] |
|
n = self.cartan_type.rank() |
|
if self.cartan_type.series == 'A': |
|
matrixform = eye(n+1) |
|
for elt in reflections: |
|
a = int(elt) |
|
mat = eye(n+1) |
|
mat[a-1, a-1] = 0 |
|
mat[a-1, a] = 1 |
|
mat[a, a-1] = 1 |
|
mat[a, a] = 0 |
|
matrixform *= mat |
|
return matrixform |
|
|
|
if self.cartan_type.series == 'D': |
|
matrixform = eye(n) |
|
for elt in reflections: |
|
a = int(elt) |
|
mat = eye(n) |
|
if a < n: |
|
mat[a-1, a-1] = 0 |
|
mat[a-1, a] = 1 |
|
mat[a, a-1] = 1 |
|
mat[a, a] = 0 |
|
matrixform *= mat |
|
else: |
|
mat[n-2, n-1] = -1 |
|
mat[n-2, n-2] = 0 |
|
mat[n-1, n-2] = -1 |
|
mat[n-1, n-1] = 0 |
|
matrixform *= mat |
|
return matrixform |
|
|
|
if self.cartan_type.series == 'G': |
|
matrixform = eye(3) |
|
for elt in reflections: |
|
a = int(elt) |
|
if a == 1: |
|
gen1 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]]) |
|
matrixform *= gen1 |
|
else: |
|
gen2 = Matrix([[Rational(2, 3), Rational(2, 3), Rational(-1, 3)], |
|
[Rational(2, 3), Rational(-1, 3), Rational(2, 3)], |
|
[Rational(-1, 3), Rational(2, 3), Rational(2, 3)]]) |
|
matrixform *= gen2 |
|
return matrixform |
|
|
|
if self.cartan_type.series == 'F': |
|
matrixform = eye(4) |
|
for elt in reflections: |
|
a = int(elt) |
|
if a == 1: |
|
mat = Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) |
|
matrixform *= mat |
|
elif a == 2: |
|
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) |
|
matrixform *= mat |
|
elif a == 3: |
|
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]) |
|
matrixform *= mat |
|
else: |
|
|
|
mat = Matrix([[Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2)], |
|
[Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)], |
|
[Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)], |
|
[Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]]) |
|
matrixform *= mat |
|
return matrixform |
|
|
|
if self.cartan_type.series == 'E': |
|
matrixform = eye(8) |
|
for elt in reflections: |
|
a = int(elt) |
|
if a == 1: |
|
mat = Matrix([[Rational(3, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), |
|
Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(-1, 4)], |
|
[Rational(1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), |
|
Rational(-1, 4), Rational(-1, 4), Rational(1, 4), Rational(-1, 4)], |
|
[Rational(1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), |
|
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)], |
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), |
|
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)], |
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), |
|
Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)], |
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), |
|
Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(1, 4)], |
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), |
|
Rational(-1, 4), Rational(-1, 4), Rational(-3, 4), Rational(1, 4)], |
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), |
|
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4)]]) |
|
matrixform *= mat |
|
elif a == 2: |
|
mat = eye(8) |
|
mat[0, 0] = 0 |
|
mat[0, 1] = -1 |
|
mat[1, 0] = -1 |
|
mat[1, 1] = 0 |
|
matrixform *= mat |
|
else: |
|
mat = eye(8) |
|
mat[a-3, a-3] = 0 |
|
mat[a-3, a-2] = 1 |
|
mat[a-2, a-3] = 1 |
|
mat[a-2, a-2] = 0 |
|
matrixform *= mat |
|
return matrixform |
|
|
|
|
|
if self.cartan_type.series in ("B", "C"): |
|
matrixform = eye(n) |
|
for elt in reflections: |
|
a = int(elt) |
|
mat = eye(n) |
|
if a == 1: |
|
mat[0, 0] = -1 |
|
matrixform *= mat |
|
else: |
|
mat[a - 2, a - 2] = 0 |
|
mat[a-2, a-1] = 1 |
|
mat[a - 1, a - 2] = 1 |
|
mat[a -1, a - 1] = 0 |
|
matrixform *= mat |
|
return matrixform |
|
|
|
|
|
|
|
def coxeter_diagram(self): |
|
""" |
|
This method returns the Coxeter diagram corresponding to a Weyl group. |
|
The Coxeter diagram can be obtained from a Lie algebra's Dynkin diagram |
|
by deleting all arrows; the Coxeter diagram is the undirected graph. |
|
The vertices of the Coxeter diagram represent the generating reflections |
|
of the Weyl group, $s_i$. An edge is drawn between $s_i$ and $s_j$ if the order |
|
$m(i, j)$ of $s_is_j$ is greater than two. If there is one edge, the order |
|
$m(i, j)$ is 3. If there are two edges, the order $m(i, j)$ is 4, and if there |
|
are three edges, the order $m(i, j)$ is 6. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.liealgebras.weyl_group import WeylGroup |
|
>>> c = WeylGroup("B3") |
|
>>> print(c.coxeter_diagram()) |
|
0---0===0 |
|
1 2 3 |
|
""" |
|
n = self.cartan_type.rank() |
|
if self.cartan_type.series in ("A", "D", "E"): |
|
return self.cartan_type.dynkin_diagram() |
|
|
|
if self.cartan_type.series in ("B", "C"): |
|
diag = "---".join("0" for i in range(1, n)) + "===0\n" |
|
diag += " ".join(str(i) for i in range(1, n+1)) |
|
return diag |
|
|
|
if self.cartan_type.series == "F": |
|
diag = "0---0===0---0\n" |
|
diag += " ".join(str(i) for i in range(1, 5)) |
|
return diag |
|
|
|
if self.cartan_type.series == "G": |
|
diag = "0β‘β‘β‘0\n1 2" |
|
return diag |
|
|