jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import datetime
import decimal
from collections import OrderedDict
import io
try:
import numpy as np
except ImportError:
np = None
import pytest
import pyarrow as pa
from pyarrow.tests.parquet.common import _check_roundtrip, make_sample_file
from pyarrow.fs import LocalFileSystem
from pyarrow.tests import util
try:
import pyarrow.parquet as pq
from pyarrow.tests.parquet.common import _write_table
except ImportError:
pq = None
try:
import pandas as pd
import pandas.testing as tm
from pyarrow.tests.parquet.common import alltypes_sample
except ImportError:
pd = tm = None
# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = pytest.mark.parquet
@pytest.mark.pandas
def test_parquet_metadata_api():
df = alltypes_sample(size=10000)
df = df.reindex(columns=sorted(df.columns))
df.index = np.random.randint(0, 1000000, size=len(df))
fileh = make_sample_file(df)
ncols = len(df.columns)
# Series of sniff tests
meta = fileh.metadata
repr(meta)
assert meta.num_rows == len(df)
assert meta.num_columns == ncols + 1 # +1 for index
assert meta.num_row_groups == 1
assert meta.format_version == '2.6'
assert 'parquet-cpp' in meta.created_by
assert isinstance(meta.serialized_size, int)
assert isinstance(meta.metadata, dict)
# Schema
schema = fileh.schema
assert meta.schema is schema
assert len(schema) == ncols + 1 # +1 for index
repr(schema)
col = schema[0]
repr(col)
assert col.name == df.columns[0]
assert col.max_definition_level == 1
assert col.max_repetition_level == 0
assert col.max_repetition_level == 0
assert col.physical_type == 'BOOLEAN'
assert col.converted_type == 'NONE'
col_float16 = schema[5]
assert col_float16.logical_type.type == 'FLOAT16'
with pytest.raises(IndexError):
schema[ncols + 1] # +1 for index
with pytest.raises(IndexError):
schema[-1]
# Row group
for rg in range(meta.num_row_groups):
rg_meta = meta.row_group(rg)
assert isinstance(rg_meta, pq.RowGroupMetaData)
repr(rg_meta)
for col in range(rg_meta.num_columns):
col_meta = rg_meta.column(col)
assert isinstance(col_meta, pq.ColumnChunkMetaData)
repr(col_meta)
with pytest.raises(IndexError):
meta.row_group(-1)
with pytest.raises(IndexError):
meta.row_group(meta.num_row_groups + 1)
rg_meta = meta.row_group(0)
assert rg_meta.num_rows == len(df)
assert rg_meta.num_columns == ncols + 1 # +1 for index
assert rg_meta.total_byte_size > 0
with pytest.raises(IndexError):
col_meta = rg_meta.column(-1)
with pytest.raises(IndexError):
col_meta = rg_meta.column(ncols + 2)
col_meta = rg_meta.column(0)
assert col_meta.file_offset == 0
assert col_meta.file_path == '' # created from BytesIO
assert col_meta.physical_type == 'BOOLEAN'
assert col_meta.num_values == 10000
assert col_meta.path_in_schema == 'bool'
assert col_meta.is_stats_set is True
assert isinstance(col_meta.statistics, pq.Statistics)
assert col_meta.compression == 'SNAPPY'
assert set(col_meta.encodings) == {'PLAIN', 'RLE'}
assert col_meta.has_dictionary_page is False
assert col_meta.dictionary_page_offset is None
assert col_meta.data_page_offset > 0
assert col_meta.total_compressed_size > 0
assert col_meta.total_uncompressed_size > 0
with pytest.raises(NotImplementedError):
col_meta.has_index_page
with pytest.raises(NotImplementedError):
col_meta.index_page_offset
def test_parquet_metadata_lifetime(tempdir):
# ARROW-6642 - ensure that chained access keeps parent objects alive
table = pa.table({'a': [1, 2, 3]})
pq.write_table(table, tempdir / 'test_metadata_segfault.parquet')
parquet_file = pq.ParquetFile(tempdir / 'test_metadata_segfault.parquet')
parquet_file.metadata.row_group(0).column(0).statistics
@pytest.mark.pandas
@pytest.mark.parametrize(
(
'data',
'type',
'physical_type',
'min_value',
'max_value',
'null_count',
'num_values',
'distinct_count'
),
[
([1, 2, 2, None, 4], pa.uint8(), 'INT32', 1, 4, 1, 4, None),
([1, 2, 2, None, 4], pa.uint16(), 'INT32', 1, 4, 1, 4, None),
([1, 2, 2, None, 4], pa.uint32(), 'INT32', 1, 4, 1, 4, None),
([1, 2, 2, None, 4], pa.uint64(), 'INT64', 1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int8(), 'INT32', -1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int16(), 'INT32', -1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int32(), 'INT32', -1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int64(), 'INT64', -1, 4, 1, 4, None),
(
[-1.1, 2.2, 2.3, None, 4.4], pa.float32(),
'FLOAT', -1.1, 4.4, 1, 4, None
),
(
[-1.1, 2.2, 2.3, None, 4.4], pa.float64(),
'DOUBLE', -1.1, 4.4, 1, 4, None
),
(
['', 'b', chr(1000), None, 'aaa'], pa.binary(),
'BYTE_ARRAY', b'', chr(1000).encode('utf-8'), 1, 4, None
),
(
[True, False, False, True, True], pa.bool_(),
'BOOLEAN', False, True, 0, 5, None
),
(
[b'\x00', b'b', b'12', None, b'aaa'], pa.binary(),
'BYTE_ARRAY', b'\x00', b'b', 1, 4, None
),
]
)
def test_parquet_column_statistics_api(data, type, physical_type, min_value,
max_value, null_count, num_values,
distinct_count):
df = pd.DataFrame({'data': data})
schema = pa.schema([pa.field('data', type)])
table = pa.Table.from_pandas(df, schema=schema, safe=False)
fileh = make_sample_file(table)
meta = fileh.metadata
rg_meta = meta.row_group(0)
col_meta = rg_meta.column(0)
stat = col_meta.statistics
assert stat.has_min_max
assert _close(type, stat.min, min_value)
assert _close(type, stat.max, max_value)
assert stat.null_count == null_count
assert stat.num_values == num_values
# TODO(kszucs) until parquet-cpp API doesn't expose HasDistinctCount
# method, missing distinct_count is represented as zero instead of None
assert stat.distinct_count == distinct_count
assert stat.physical_type == physical_type
def _close(type, left, right):
if type == pa.float32():
return abs(left - right) < 1E-7
elif type == pa.float64():
return abs(left - right) < 1E-13
else:
return left == right
# ARROW-6339
@pytest.mark.pandas
def test_parquet_raise_on_unset_statistics():
df = pd.DataFrame({"t": pd.Series([pd.NaT], dtype="datetime64[ns]")})
meta = make_sample_file(pa.Table.from_pandas(df)).metadata
assert not meta.row_group(0).column(0).statistics.has_min_max
assert meta.row_group(0).column(0).statistics.max is None
def test_statistics_convert_logical_types(tempdir):
# ARROW-5166, ARROW-4139
# (min, max, type)
cases = [(10, 11164359321221007157, pa.uint64()),
(10, 4294967295, pa.uint32()),
("Γ€hnlich", "ΓΆffentlich", pa.utf8()),
(datetime.time(10, 30, 0, 1000), datetime.time(15, 30, 0, 1000),
pa.time32('ms')),
(datetime.time(10, 30, 0, 1000), datetime.time(15, 30, 0, 1000),
pa.time64('us')),
(datetime.datetime(2019, 6, 24, 0, 0, 0, 1000),
datetime.datetime(2019, 6, 25, 0, 0, 0, 1000),
pa.timestamp('ms')),
(datetime.datetime(2019, 6, 24, 0, 0, 0, 1000),
datetime.datetime(2019, 6, 25, 0, 0, 0, 1000),
pa.timestamp('us')),
(datetime.date(2019, 6, 24),
datetime.date(2019, 6, 25),
pa.date32()),
(decimal.Decimal("20.123"),
decimal.Decimal("20.124"),
pa.decimal128(12, 5))]
for i, (min_val, max_val, typ) in enumerate(cases):
t = pa.Table.from_arrays([pa.array([min_val, max_val], type=typ)],
['col'])
path = str(tempdir / ('example{}.parquet'.format(i)))
pq.write_table(t, path, version='2.6')
pf = pq.ParquetFile(path)
stats = pf.metadata.row_group(0).column(0).statistics
assert stats.min == min_val
assert stats.max == max_val
def test_parquet_write_disable_statistics(tempdir):
table = pa.Table.from_pydict(
OrderedDict([
('a', pa.array([1, 2, 3])),
('b', pa.array(['a', 'b', 'c']))
])
)
_write_table(table, tempdir / 'data.parquet')
meta = pq.read_metadata(tempdir / 'data.parquet')
for col in [0, 1]:
cc = meta.row_group(0).column(col)
assert cc.is_stats_set is True
assert cc.statistics is not None
_write_table(table, tempdir / 'data2.parquet', write_statistics=False)
meta = pq.read_metadata(tempdir / 'data2.parquet')
for col in [0, 1]:
cc = meta.row_group(0).column(col)
assert cc.is_stats_set is False
assert cc.statistics is None
_write_table(table, tempdir / 'data3.parquet', write_statistics=['a'])
meta = pq.read_metadata(tempdir / 'data3.parquet')
cc_a = meta.row_group(0).column(0)
cc_b = meta.row_group(0).column(1)
assert cc_a.is_stats_set is True
assert cc_b.is_stats_set is False
assert cc_a.statistics is not None
assert cc_b.statistics is None
def test_parquet_sorting_column():
sorting_col = pq.SortingColumn(10)
assert sorting_col.to_dict() == {
'column_index': 10,
'descending': False,
'nulls_first': False
}
sorting_col = pq.SortingColumn(0, descending=True, nulls_first=True)
assert sorting_col.to_dict() == {
'column_index': 0,
'descending': True,
'nulls_first': True
}
schema = pa.schema([('a', pa.int64()), ('b', pa.int64())])
sorting_cols = (
pq.SortingColumn(1, descending=True),
pq.SortingColumn(0, descending=False),
)
sort_order, null_placement = pq.SortingColumn.to_ordering(schema, sorting_cols)
assert sort_order == (('b', "descending"), ('a', "ascending"))
assert null_placement == "at_end"
sorting_cols_roundtripped = pq.SortingColumn.from_ordering(
schema, sort_order, null_placement)
assert sorting_cols_roundtripped == sorting_cols
sorting_cols = pq.SortingColumn.from_ordering(
schema, ('a', ('b', "descending")), null_placement="at_start")
expected = (
pq.SortingColumn(0, descending=False, nulls_first=True),
pq.SortingColumn(1, descending=True, nulls_first=True),
)
assert sorting_cols == expected
# Conversions handle empty tuples
empty_sorting_cols = pq.SortingColumn.from_ordering(schema, ())
assert empty_sorting_cols == ()
assert pq.SortingColumn.to_ordering(schema, ()) == ((), "at_end")
with pytest.raises(ValueError):
pq.SortingColumn.from_ordering(schema, (("a", "not a valid sort order")))
with pytest.raises(ValueError, match="inconsistent null placement"):
sorting_cols = (
pq.SortingColumn(1, nulls_first=True),
pq.SortingColumn(0, nulls_first=False),
)
pq.SortingColumn.to_ordering(schema, sorting_cols)
def test_parquet_sorting_column_nested():
schema = pa.schema({
'a': pa.struct([('x', pa.int64()), ('y', pa.int64())]),
'b': pa.int64()
})
sorting_columns = [
pq.SortingColumn(0, descending=True), # a.x
pq.SortingColumn(2, descending=False) # b
]
sort_order, null_placement = pq.SortingColumn.to_ordering(schema, sorting_columns)
assert null_placement == "at_end"
assert len(sort_order) == 2
assert sort_order[0] == ("a.x", "descending")
assert sort_order[1] == ("b", "ascending")
def test_parquet_file_sorting_columns():
table = pa.table({'a': [1, 2, 3], 'b': ['a', 'b', 'c']})
sorting_columns = (
pq.SortingColumn(column_index=0, descending=True, nulls_first=True),
pq.SortingColumn(column_index=1, descending=False),
)
writer = pa.BufferOutputStream()
_write_table(table, writer, sorting_columns=sorting_columns)
reader = pa.BufferReader(writer.getvalue())
# Can retrieve sorting columns from metadata
metadata = pq.read_metadata(reader)
assert sorting_columns == metadata.row_group(0).sorting_columns
metadata_dict = metadata.to_dict()
assert metadata_dict.get('num_columns') == 2
assert metadata_dict.get('num_rows') == 3
assert metadata_dict.get('num_row_groups') == 1
def test_field_id_metadata():
# ARROW-7080
field_id = b'PARQUET:field_id'
inner = pa.field('inner', pa.int32(), metadata={field_id: b'100'})
middle = pa.field('middle', pa.struct(
[inner]), metadata={field_id: b'101'})
fields = [
pa.field('basic', pa.int32(), metadata={
b'other': b'abc', field_id: b'1'}),
pa.field(
'list',
pa.list_(pa.field('list-inner', pa.int32(),
metadata={field_id: b'10'})),
metadata={field_id: b'11'}),
pa.field('struct', pa.struct([middle]), metadata={field_id: b'102'}),
pa.field('no-metadata', pa.int32()),
pa.field('non-integral-field-id', pa.int32(),
metadata={field_id: b'xyz'}),
pa.field('negative-field-id', pa.int32(),
metadata={field_id: b'-1000'})
]
arrs = [[] for _ in fields]
table = pa.table(arrs, schema=pa.schema(fields))
bio = pa.BufferOutputStream()
pq.write_table(table, bio)
contents = bio.getvalue()
pf = pq.ParquetFile(pa.BufferReader(contents))
schema = pf.schema_arrow
assert schema[0].metadata[field_id] == b'1'
assert schema[0].metadata[b'other'] == b'abc'
list_field = schema[1]
assert list_field.metadata[field_id] == b'11'
list_item_field = list_field.type.value_field
assert list_item_field.metadata[field_id] == b'10'
struct_field = schema[2]
assert struct_field.metadata[field_id] == b'102'
struct_middle_field = struct_field.type[0]
assert struct_middle_field.metadata[field_id] == b'101'
struct_inner_field = struct_middle_field.type[0]
assert struct_inner_field.metadata[field_id] == b'100'
assert schema[3].metadata is None
# Invalid input is passed through (ok) but does not
# have field_id in parquet (not tested)
assert schema[4].metadata[field_id] == b'xyz'
assert schema[5].metadata[field_id] == b'-1000'
def test_parquet_file_page_index():
for write_page_index in (False, True):
table = pa.table({'a': [1, 2, 3]})
writer = pa.BufferOutputStream()
_write_table(table, writer, write_page_index=write_page_index)
reader = pa.BufferReader(writer.getvalue())
# Can retrieve sorting columns from metadata
metadata = pq.read_metadata(reader)
cc = metadata.row_group(0).column(0)
assert cc.has_offset_index is write_page_index
assert cc.has_column_index is write_page_index
@pytest.mark.pandas
def test_multi_dataset_metadata(tempdir):
filenames = ["ARROW-1983-dataset.0", "ARROW-1983-dataset.1"]
metapath = str(tempdir / "_metadata")
# create a test dataset
df = pd.DataFrame({
'one': [1, 2, 3],
'two': [-1, -2, -3],
'three': [[1, 2], [2, 3], [3, 4]],
})
table = pa.Table.from_pandas(df)
# write dataset twice and collect/merge metadata
_meta = None
for filename in filenames:
meta = []
pq.write_table(table, str(tempdir / filename),
metadata_collector=meta)
meta[0].set_file_path(filename)
if _meta is None:
_meta = meta[0]
else:
_meta.append_row_groups(meta[0])
# Write merged metadata-only file
with open(metapath, "wb") as f:
_meta.write_metadata_file(f)
# Read back the metadata
meta = pq.read_metadata(metapath)
md = meta.to_dict()
_md = _meta.to_dict()
for key in _md:
if key != 'serialized_size':
assert _md[key] == md[key]
assert _md['num_columns'] == 3
assert _md['num_rows'] == 6
assert _md['num_row_groups'] == 2
assert _md['serialized_size'] == 0
assert md['serialized_size'] > 0
def test_metadata_hashing(tempdir):
path1 = str(tempdir / "metadata1")
schema1 = pa.schema([("a", "int64"), ("b", "float64")])
pq.write_metadata(schema1, path1)
parquet_meta1 = pq.read_metadata(path1)
# Same as 1, just different path
path2 = str(tempdir / "metadata2")
schema2 = pa.schema([("a", "int64"), ("b", "float64")])
pq.write_metadata(schema2, path2)
parquet_meta2 = pq.read_metadata(path2)
# different schema
path3 = str(tempdir / "metadata3")
schema3 = pa.schema([("a", "int64"), ("b", "float32")])
pq.write_metadata(schema3, path3)
parquet_meta3 = pq.read_metadata(path3)
# Deterministic
assert hash(parquet_meta1) == hash(parquet_meta1) # equal w/ same instance
assert hash(parquet_meta1) == hash(parquet_meta2) # equal w/ different instance
# Not the same as other metadata with different schema
assert hash(parquet_meta1) != hash(parquet_meta3)
@pytest.mark.filterwarnings("ignore:Parquet format:FutureWarning")
def test_write_metadata(tempdir):
path = str(tempdir / "metadata")
schema = pa.schema([("a", "int64"), ("b", "float64")])
# write a pyarrow schema
pq.write_metadata(schema, path)
parquet_meta = pq.read_metadata(path)
schema_as_arrow = parquet_meta.schema.to_arrow_schema()
assert schema_as_arrow.equals(schema)
# ARROW-8980: Check that the ARROW:schema metadata key was removed
if schema_as_arrow.metadata:
assert b'ARROW:schema' not in schema_as_arrow.metadata
# pass through writer keyword arguments
for version in ["1.0", "2.4", "2.6"]:
pq.write_metadata(schema, path, version=version)
parquet_meta = pq.read_metadata(path)
# The version is stored as a single integer in the Parquet metadata,
# so it cannot correctly express dotted format versions
expected_version = "1.0" if version == "1.0" else "2.6"
assert parquet_meta.format_version == expected_version
# metadata_collector: list of FileMetaData objects
table = pa.table({'a': [1, 2], 'b': [.1, .2]}, schema=schema)
pq.write_table(table, tempdir / "data.parquet")
parquet_meta = pq.read_metadata(str(tempdir / "data.parquet"))
pq.write_metadata(
schema, path, metadata_collector=[parquet_meta, parquet_meta]
)
parquet_meta_mult = pq.read_metadata(path)
assert parquet_meta_mult.num_row_groups == 2
# append metadata with different schema raises an error
msg = ("AppendRowGroups requires equal schemas.\n"
"The two columns with index 0 differ.")
with pytest.raises(RuntimeError, match=msg):
pq.write_metadata(
pa.schema([("a", "int32"), ("b", "null")]),
path, metadata_collector=[parquet_meta, parquet_meta]
)
def test_table_large_metadata():
# ARROW-8694
my_schema = pa.schema([pa.field('f0', 'double')],
metadata={'large': 'x' * 10000000})
table = pa.table([range(10)], schema=my_schema)
_check_roundtrip(table)
@pytest.mark.pandas
def test_compare_schemas():
df = alltypes_sample(size=10000)
fileh = make_sample_file(df)
fileh2 = make_sample_file(df)
fileh3 = make_sample_file(df[df.columns[::2]])
# ParquetSchema
assert isinstance(fileh.schema, pq.ParquetSchema)
assert fileh.schema.equals(fileh.schema)
assert fileh.schema == fileh.schema
assert fileh.schema.equals(fileh2.schema)
assert fileh.schema == fileh2.schema
assert fileh.schema != 'arbitrary object'
assert not fileh.schema.equals(fileh3.schema)
assert fileh.schema != fileh3.schema
# ColumnSchema
assert isinstance(fileh.schema[0], pq.ColumnSchema)
assert fileh.schema[0].equals(fileh.schema[0])
assert fileh.schema[0] == fileh.schema[0]
assert not fileh.schema[0].equals(fileh.schema[1])
assert fileh.schema[0] != fileh.schema[1]
assert fileh.schema[0] != 'arbitrary object'
@pytest.mark.pandas
def test_read_schema(tempdir):
N = 100
df = pd.DataFrame({
'index': np.arange(N),
'values': np.random.randn(N)
}, columns=['index', 'values'])
data_path = tempdir / 'test.parquet'
table = pa.Table.from_pandas(df)
_write_table(table, data_path)
read1 = pq.read_schema(data_path)
read2 = pq.read_schema(data_path, memory_map=True)
assert table.schema.equals(read1)
assert table.schema.equals(read2)
assert table.schema.metadata[b'pandas'] == read1.metadata[b'pandas']
def test_parquet_metadata_empty_to_dict(tempdir):
# https://issues.apache.org/jira/browse/ARROW-10146
table = pa.table({"a": pa.array([], type="int64")})
pq.write_table(table, tempdir / "data.parquet")
metadata = pq.read_metadata(tempdir / "data.parquet")
# ensure this doesn't error / statistics set to None
metadata_dict = metadata.to_dict()
assert len(metadata_dict["row_groups"]) == 1
assert len(metadata_dict["row_groups"][0]["columns"]) == 1
assert metadata_dict["row_groups"][0]["columns"][0]["statistics"] is None
@pytest.mark.slow
@pytest.mark.large_memory
def test_metadata_exceeds_message_size():
# ARROW-13655: Thrift may enable a default message size that limits
# the size of Parquet metadata that can be written.
NCOLS = 1000
NREPEATS = 4000
table = pa.table({str(i): np.random.randn(10) for i in range(NCOLS)})
with pa.BufferOutputStream() as out:
pq.write_table(table, out)
buf = out.getvalue()
original_metadata = pq.read_metadata(pa.BufferReader(buf))
metadata = pq.read_metadata(pa.BufferReader(buf))
for i in range(NREPEATS):
metadata.append_row_groups(original_metadata)
with pa.BufferOutputStream() as out:
metadata.write_metadata_file(out)
buf = out.getvalue()
metadata = pq.read_metadata(pa.BufferReader(buf))
def test_metadata_schema_filesystem(tempdir):
table = pa.table({"a": [1, 2, 3]})
# URI writing to local file.
fname = "data.parquet"
file_path = str(tempdir / fname)
file_uri = 'file:///' + file_path
pq.write_table(table, file_path)
# Get expected `metadata` from path.
metadata = pq.read_metadata(tempdir / fname)
schema = table.schema
assert pq.read_metadata(file_uri).equals(metadata)
assert pq.read_metadata(
file_path, filesystem=LocalFileSystem()).equals(metadata)
assert pq.read_metadata(
fname, filesystem=f'file:///{tempdir}').equals(metadata)
assert pq.read_schema(file_uri).equals(schema)
assert pq.read_schema(
file_path, filesystem=LocalFileSystem()).equals(schema)
assert pq.read_schema(
fname, filesystem=f'file:///{tempdir}').equals(schema)
with util.change_cwd(tempdir):
# Pass `filesystem` arg
assert pq.read_metadata(
fname, filesystem=LocalFileSystem()).equals(metadata)
assert pq.read_schema(
fname, filesystem=LocalFileSystem()).equals(schema)
def test_metadata_equals():
table = pa.table({"a": [1, 2, 3]})
with pa.BufferOutputStream() as out:
pq.write_table(table, out)
buf = out.getvalue()
original_metadata = pq.read_metadata(pa.BufferReader(buf))
match = "Argument 'other' has incorrect type"
with pytest.raises(TypeError, match=match):
original_metadata.equals(None)
@pytest.mark.parametrize("t1,t2,expected_error", (
({'col1': range(10)}, {'col1': range(10)}, None),
({'col1': range(10)}, {'col2': range(10)},
"The two columns with index 0 differ."),
({'col1': range(10), 'col2': range(10)}, {'col3': range(10)},
"This schema has 2 columns, other has 1")
))
def test_metadata_append_row_groups_diff(t1, t2, expected_error):
table1 = pa.table(t1)
table2 = pa.table(t2)
buf1 = io.BytesIO()
buf2 = io.BytesIO()
pq.write_table(table1, buf1)
pq.write_table(table2, buf2)
buf1.seek(0)
buf2.seek(0)
meta1 = pq.ParquetFile(buf1).metadata
meta2 = pq.ParquetFile(buf2).metadata
if expected_error:
# Error clearly defines it's happening at append row groups call
prefix = "AppendRowGroups requires equal schemas.\n"
with pytest.raises(RuntimeError, match=prefix + expected_error):
meta1.append_row_groups(meta2)
else:
meta1.append_row_groups(meta2)
@pytest.mark.s3
def test_write_metadata_fs_file_combinations(tempdir, s3_example_s3fs):
s3_fs, s3_path = s3_example_s3fs
meta1 = tempdir / "meta1"
meta2 = tempdir / "meta2"
meta3 = tempdir / "meta3"
meta4 = tempdir / "meta4"
meta5 = f"{s3_path}/meta5"
table = pa.table({"col": range(5)})
# plain local path
pq.write_metadata(table.schema, meta1, [])
# Used the localfilesystem to resolve opening an output stream
pq.write_metadata(table.schema, meta2, [], filesystem=LocalFileSystem())
# Can resolve local file URI
pq.write_metadata(table.schema, meta3.as_uri(), [])
# Take a file-like obj all the way thru?
with meta4.open('wb+') as meta4_stream:
pq.write_metadata(table.schema, meta4_stream, [])
# S3FileSystem
pq.write_metadata(table.schema, meta5, [], filesystem=s3_fs)
assert meta1.read_bytes() == meta2.read_bytes() \
== meta3.read_bytes() == meta4.read_bytes() \
== s3_fs.open(meta5).read()
def test_column_chunk_key_value_metadata(parquet_test_datadir):
metadata = pq.read_metadata(parquet_test_datadir /
'column_chunk_key_value_metadata.parquet')
key_value_metadata1 = metadata.row_group(0).column(0).metadata
assert key_value_metadata1 == {b'foo': b'bar', b'thisiskeywithoutvalue': b''}
key_value_metadata2 = metadata.row_group(0).column(1).metadata
assert key_value_metadata2 is None
def test_internal_class_instantiation():
def msg(c):
return f"Do not call {c}'s constructor directly"
with pytest.raises(TypeError, match=msg("Statistics")):
pq.Statistics()
with pytest.raises(TypeError, match=msg("ParquetLogicalType")):
pq.ParquetLogicalType()
with pytest.raises(TypeError, match=msg("ColumnChunkMetaData")):
pq.ColumnChunkMetaData()
with pytest.raises(TypeError, match=msg("RowGroupMetaData")):
pq.RowGroupMetaData()
with pytest.raises(TypeError, match=msg("FileMetaData")):
pq.FileMetaData()