File size: 27,742 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import datetime
import decimal
from collections import OrderedDict
import io
try:
import numpy as np
except ImportError:
np = None
import pytest
import pyarrow as pa
from pyarrow.tests.parquet.common import _check_roundtrip, make_sample_file
from pyarrow.fs import LocalFileSystem
from pyarrow.tests import util
try:
import pyarrow.parquet as pq
from pyarrow.tests.parquet.common import _write_table
except ImportError:
pq = None
try:
import pandas as pd
import pandas.testing as tm
from pyarrow.tests.parquet.common import alltypes_sample
except ImportError:
pd = tm = None
# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = pytest.mark.parquet
@pytest.mark.pandas
def test_parquet_metadata_api():
df = alltypes_sample(size=10000)
df = df.reindex(columns=sorted(df.columns))
df.index = np.random.randint(0, 1000000, size=len(df))
fileh = make_sample_file(df)
ncols = len(df.columns)
# Series of sniff tests
meta = fileh.metadata
repr(meta)
assert meta.num_rows == len(df)
assert meta.num_columns == ncols + 1 # +1 for index
assert meta.num_row_groups == 1
assert meta.format_version == '2.6'
assert 'parquet-cpp' in meta.created_by
assert isinstance(meta.serialized_size, int)
assert isinstance(meta.metadata, dict)
# Schema
schema = fileh.schema
assert meta.schema is schema
assert len(schema) == ncols + 1 # +1 for index
repr(schema)
col = schema[0]
repr(col)
assert col.name == df.columns[0]
assert col.max_definition_level == 1
assert col.max_repetition_level == 0
assert col.max_repetition_level == 0
assert col.physical_type == 'BOOLEAN'
assert col.converted_type == 'NONE'
col_float16 = schema[5]
assert col_float16.logical_type.type == 'FLOAT16'
with pytest.raises(IndexError):
schema[ncols + 1] # +1 for index
with pytest.raises(IndexError):
schema[-1]
# Row group
for rg in range(meta.num_row_groups):
rg_meta = meta.row_group(rg)
assert isinstance(rg_meta, pq.RowGroupMetaData)
repr(rg_meta)
for col in range(rg_meta.num_columns):
col_meta = rg_meta.column(col)
assert isinstance(col_meta, pq.ColumnChunkMetaData)
repr(col_meta)
with pytest.raises(IndexError):
meta.row_group(-1)
with pytest.raises(IndexError):
meta.row_group(meta.num_row_groups + 1)
rg_meta = meta.row_group(0)
assert rg_meta.num_rows == len(df)
assert rg_meta.num_columns == ncols + 1 # +1 for index
assert rg_meta.total_byte_size > 0
with pytest.raises(IndexError):
col_meta = rg_meta.column(-1)
with pytest.raises(IndexError):
col_meta = rg_meta.column(ncols + 2)
col_meta = rg_meta.column(0)
assert col_meta.file_offset == 0
assert col_meta.file_path == '' # created from BytesIO
assert col_meta.physical_type == 'BOOLEAN'
assert col_meta.num_values == 10000
assert col_meta.path_in_schema == 'bool'
assert col_meta.is_stats_set is True
assert isinstance(col_meta.statistics, pq.Statistics)
assert col_meta.compression == 'SNAPPY'
assert set(col_meta.encodings) == {'PLAIN', 'RLE'}
assert col_meta.has_dictionary_page is False
assert col_meta.dictionary_page_offset is None
assert col_meta.data_page_offset > 0
assert col_meta.total_compressed_size > 0
assert col_meta.total_uncompressed_size > 0
with pytest.raises(NotImplementedError):
col_meta.has_index_page
with pytest.raises(NotImplementedError):
col_meta.index_page_offset
def test_parquet_metadata_lifetime(tempdir):
# ARROW-6642 - ensure that chained access keeps parent objects alive
table = pa.table({'a': [1, 2, 3]})
pq.write_table(table, tempdir / 'test_metadata_segfault.parquet')
parquet_file = pq.ParquetFile(tempdir / 'test_metadata_segfault.parquet')
parquet_file.metadata.row_group(0).column(0).statistics
@pytest.mark.pandas
@pytest.mark.parametrize(
(
'data',
'type',
'physical_type',
'min_value',
'max_value',
'null_count',
'num_values',
'distinct_count'
),
[
([1, 2, 2, None, 4], pa.uint8(), 'INT32', 1, 4, 1, 4, None),
([1, 2, 2, None, 4], pa.uint16(), 'INT32', 1, 4, 1, 4, None),
([1, 2, 2, None, 4], pa.uint32(), 'INT32', 1, 4, 1, 4, None),
([1, 2, 2, None, 4], pa.uint64(), 'INT64', 1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int8(), 'INT32', -1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int16(), 'INT32', -1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int32(), 'INT32', -1, 4, 1, 4, None),
([-1, 2, 2, None, 4], pa.int64(), 'INT64', -1, 4, 1, 4, None),
(
[-1.1, 2.2, 2.3, None, 4.4], pa.float32(),
'FLOAT', -1.1, 4.4, 1, 4, None
),
(
[-1.1, 2.2, 2.3, None, 4.4], pa.float64(),
'DOUBLE', -1.1, 4.4, 1, 4, None
),
(
['', 'b', chr(1000), None, 'aaa'], pa.binary(),
'BYTE_ARRAY', b'', chr(1000).encode('utf-8'), 1, 4, None
),
(
[True, False, False, True, True], pa.bool_(),
'BOOLEAN', False, True, 0, 5, None
),
(
[b'\x00', b'b', b'12', None, b'aaa'], pa.binary(),
'BYTE_ARRAY', b'\x00', b'b', 1, 4, None
),
]
)
def test_parquet_column_statistics_api(data, type, physical_type, min_value,
max_value, null_count, num_values,
distinct_count):
df = pd.DataFrame({'data': data})
schema = pa.schema([pa.field('data', type)])
table = pa.Table.from_pandas(df, schema=schema, safe=False)
fileh = make_sample_file(table)
meta = fileh.metadata
rg_meta = meta.row_group(0)
col_meta = rg_meta.column(0)
stat = col_meta.statistics
assert stat.has_min_max
assert _close(type, stat.min, min_value)
assert _close(type, stat.max, max_value)
assert stat.null_count == null_count
assert stat.num_values == num_values
# TODO(kszucs) until parquet-cpp API doesn't expose HasDistinctCount
# method, missing distinct_count is represented as zero instead of None
assert stat.distinct_count == distinct_count
assert stat.physical_type == physical_type
def _close(type, left, right):
if type == pa.float32():
return abs(left - right) < 1E-7
elif type == pa.float64():
return abs(left - right) < 1E-13
else:
return left == right
# ARROW-6339
@pytest.mark.pandas
def test_parquet_raise_on_unset_statistics():
df = pd.DataFrame({"t": pd.Series([pd.NaT], dtype="datetime64[ns]")})
meta = make_sample_file(pa.Table.from_pandas(df)).metadata
assert not meta.row_group(0).column(0).statistics.has_min_max
assert meta.row_group(0).column(0).statistics.max is None
def test_statistics_convert_logical_types(tempdir):
# ARROW-5166, ARROW-4139
# (min, max, type)
cases = [(10, 11164359321221007157, pa.uint64()),
(10, 4294967295, pa.uint32()),
("ähnlich", "öffentlich", pa.utf8()),
(datetime.time(10, 30, 0, 1000), datetime.time(15, 30, 0, 1000),
pa.time32('ms')),
(datetime.time(10, 30, 0, 1000), datetime.time(15, 30, 0, 1000),
pa.time64('us')),
(datetime.datetime(2019, 6, 24, 0, 0, 0, 1000),
datetime.datetime(2019, 6, 25, 0, 0, 0, 1000),
pa.timestamp('ms')),
(datetime.datetime(2019, 6, 24, 0, 0, 0, 1000),
datetime.datetime(2019, 6, 25, 0, 0, 0, 1000),
pa.timestamp('us')),
(datetime.date(2019, 6, 24),
datetime.date(2019, 6, 25),
pa.date32()),
(decimal.Decimal("20.123"),
decimal.Decimal("20.124"),
pa.decimal128(12, 5))]
for i, (min_val, max_val, typ) in enumerate(cases):
t = pa.Table.from_arrays([pa.array([min_val, max_val], type=typ)],
['col'])
path = str(tempdir / ('example{}.parquet'.format(i)))
pq.write_table(t, path, version='2.6')
pf = pq.ParquetFile(path)
stats = pf.metadata.row_group(0).column(0).statistics
assert stats.min == min_val
assert stats.max == max_val
def test_parquet_write_disable_statistics(tempdir):
table = pa.Table.from_pydict(
OrderedDict([
('a', pa.array([1, 2, 3])),
('b', pa.array(['a', 'b', 'c']))
])
)
_write_table(table, tempdir / 'data.parquet')
meta = pq.read_metadata(tempdir / 'data.parquet')
for col in [0, 1]:
cc = meta.row_group(0).column(col)
assert cc.is_stats_set is True
assert cc.statistics is not None
_write_table(table, tempdir / 'data2.parquet', write_statistics=False)
meta = pq.read_metadata(tempdir / 'data2.parquet')
for col in [0, 1]:
cc = meta.row_group(0).column(col)
assert cc.is_stats_set is False
assert cc.statistics is None
_write_table(table, tempdir / 'data3.parquet', write_statistics=['a'])
meta = pq.read_metadata(tempdir / 'data3.parquet')
cc_a = meta.row_group(0).column(0)
cc_b = meta.row_group(0).column(1)
assert cc_a.is_stats_set is True
assert cc_b.is_stats_set is False
assert cc_a.statistics is not None
assert cc_b.statistics is None
def test_parquet_sorting_column():
sorting_col = pq.SortingColumn(10)
assert sorting_col.to_dict() == {
'column_index': 10,
'descending': False,
'nulls_first': False
}
sorting_col = pq.SortingColumn(0, descending=True, nulls_first=True)
assert sorting_col.to_dict() == {
'column_index': 0,
'descending': True,
'nulls_first': True
}
schema = pa.schema([('a', pa.int64()), ('b', pa.int64())])
sorting_cols = (
pq.SortingColumn(1, descending=True),
pq.SortingColumn(0, descending=False),
)
sort_order, null_placement = pq.SortingColumn.to_ordering(schema, sorting_cols)
assert sort_order == (('b', "descending"), ('a', "ascending"))
assert null_placement == "at_end"
sorting_cols_roundtripped = pq.SortingColumn.from_ordering(
schema, sort_order, null_placement)
assert sorting_cols_roundtripped == sorting_cols
sorting_cols = pq.SortingColumn.from_ordering(
schema, ('a', ('b', "descending")), null_placement="at_start")
expected = (
pq.SortingColumn(0, descending=False, nulls_first=True),
pq.SortingColumn(1, descending=True, nulls_first=True),
)
assert sorting_cols == expected
# Conversions handle empty tuples
empty_sorting_cols = pq.SortingColumn.from_ordering(schema, ())
assert empty_sorting_cols == ()
assert pq.SortingColumn.to_ordering(schema, ()) == ((), "at_end")
with pytest.raises(ValueError):
pq.SortingColumn.from_ordering(schema, (("a", "not a valid sort order")))
with pytest.raises(ValueError, match="inconsistent null placement"):
sorting_cols = (
pq.SortingColumn(1, nulls_first=True),
pq.SortingColumn(0, nulls_first=False),
)
pq.SortingColumn.to_ordering(schema, sorting_cols)
def test_parquet_sorting_column_nested():
schema = pa.schema({
'a': pa.struct([('x', pa.int64()), ('y', pa.int64())]),
'b': pa.int64()
})
sorting_columns = [
pq.SortingColumn(0, descending=True), # a.x
pq.SortingColumn(2, descending=False) # b
]
sort_order, null_placement = pq.SortingColumn.to_ordering(schema, sorting_columns)
assert null_placement == "at_end"
assert len(sort_order) == 2
assert sort_order[0] == ("a.x", "descending")
assert sort_order[1] == ("b", "ascending")
def test_parquet_file_sorting_columns():
table = pa.table({'a': [1, 2, 3], 'b': ['a', 'b', 'c']})
sorting_columns = (
pq.SortingColumn(column_index=0, descending=True, nulls_first=True),
pq.SortingColumn(column_index=1, descending=False),
)
writer = pa.BufferOutputStream()
_write_table(table, writer, sorting_columns=sorting_columns)
reader = pa.BufferReader(writer.getvalue())
# Can retrieve sorting columns from metadata
metadata = pq.read_metadata(reader)
assert sorting_columns == metadata.row_group(0).sorting_columns
metadata_dict = metadata.to_dict()
assert metadata_dict.get('num_columns') == 2
assert metadata_dict.get('num_rows') == 3
assert metadata_dict.get('num_row_groups') == 1
def test_field_id_metadata():
# ARROW-7080
field_id = b'PARQUET:field_id'
inner = pa.field('inner', pa.int32(), metadata={field_id: b'100'})
middle = pa.field('middle', pa.struct(
[inner]), metadata={field_id: b'101'})
fields = [
pa.field('basic', pa.int32(), metadata={
b'other': b'abc', field_id: b'1'}),
pa.field(
'list',
pa.list_(pa.field('list-inner', pa.int32(),
metadata={field_id: b'10'})),
metadata={field_id: b'11'}),
pa.field('struct', pa.struct([middle]), metadata={field_id: b'102'}),
pa.field('no-metadata', pa.int32()),
pa.field('non-integral-field-id', pa.int32(),
metadata={field_id: b'xyz'}),
pa.field('negative-field-id', pa.int32(),
metadata={field_id: b'-1000'})
]
arrs = [[] for _ in fields]
table = pa.table(arrs, schema=pa.schema(fields))
bio = pa.BufferOutputStream()
pq.write_table(table, bio)
contents = bio.getvalue()
pf = pq.ParquetFile(pa.BufferReader(contents))
schema = pf.schema_arrow
assert schema[0].metadata[field_id] == b'1'
assert schema[0].metadata[b'other'] == b'abc'
list_field = schema[1]
assert list_field.metadata[field_id] == b'11'
list_item_field = list_field.type.value_field
assert list_item_field.metadata[field_id] == b'10'
struct_field = schema[2]
assert struct_field.metadata[field_id] == b'102'
struct_middle_field = struct_field.type[0]
assert struct_middle_field.metadata[field_id] == b'101'
struct_inner_field = struct_middle_field.type[0]
assert struct_inner_field.metadata[field_id] == b'100'
assert schema[3].metadata is None
# Invalid input is passed through (ok) but does not
# have field_id in parquet (not tested)
assert schema[4].metadata[field_id] == b'xyz'
assert schema[5].metadata[field_id] == b'-1000'
def test_parquet_file_page_index():
for write_page_index in (False, True):
table = pa.table({'a': [1, 2, 3]})
writer = pa.BufferOutputStream()
_write_table(table, writer, write_page_index=write_page_index)
reader = pa.BufferReader(writer.getvalue())
# Can retrieve sorting columns from metadata
metadata = pq.read_metadata(reader)
cc = metadata.row_group(0).column(0)
assert cc.has_offset_index is write_page_index
assert cc.has_column_index is write_page_index
@pytest.mark.pandas
def test_multi_dataset_metadata(tempdir):
filenames = ["ARROW-1983-dataset.0", "ARROW-1983-dataset.1"]
metapath = str(tempdir / "_metadata")
# create a test dataset
df = pd.DataFrame({
'one': [1, 2, 3],
'two': [-1, -2, -3],
'three': [[1, 2], [2, 3], [3, 4]],
})
table = pa.Table.from_pandas(df)
# write dataset twice and collect/merge metadata
_meta = None
for filename in filenames:
meta = []
pq.write_table(table, str(tempdir / filename),
metadata_collector=meta)
meta[0].set_file_path(filename)
if _meta is None:
_meta = meta[0]
else:
_meta.append_row_groups(meta[0])
# Write merged metadata-only file
with open(metapath, "wb") as f:
_meta.write_metadata_file(f)
# Read back the metadata
meta = pq.read_metadata(metapath)
md = meta.to_dict()
_md = _meta.to_dict()
for key in _md:
if key != 'serialized_size':
assert _md[key] == md[key]
assert _md['num_columns'] == 3
assert _md['num_rows'] == 6
assert _md['num_row_groups'] == 2
assert _md['serialized_size'] == 0
assert md['serialized_size'] > 0
def test_metadata_hashing(tempdir):
path1 = str(tempdir / "metadata1")
schema1 = pa.schema([("a", "int64"), ("b", "float64")])
pq.write_metadata(schema1, path1)
parquet_meta1 = pq.read_metadata(path1)
# Same as 1, just different path
path2 = str(tempdir / "metadata2")
schema2 = pa.schema([("a", "int64"), ("b", "float64")])
pq.write_metadata(schema2, path2)
parquet_meta2 = pq.read_metadata(path2)
# different schema
path3 = str(tempdir / "metadata3")
schema3 = pa.schema([("a", "int64"), ("b", "float32")])
pq.write_metadata(schema3, path3)
parquet_meta3 = pq.read_metadata(path3)
# Deterministic
assert hash(parquet_meta1) == hash(parquet_meta1) # equal w/ same instance
assert hash(parquet_meta1) == hash(parquet_meta2) # equal w/ different instance
# Not the same as other metadata with different schema
assert hash(parquet_meta1) != hash(parquet_meta3)
@pytest.mark.filterwarnings("ignore:Parquet format:FutureWarning")
def test_write_metadata(tempdir):
path = str(tempdir / "metadata")
schema = pa.schema([("a", "int64"), ("b", "float64")])
# write a pyarrow schema
pq.write_metadata(schema, path)
parquet_meta = pq.read_metadata(path)
schema_as_arrow = parquet_meta.schema.to_arrow_schema()
assert schema_as_arrow.equals(schema)
# ARROW-8980: Check that the ARROW:schema metadata key was removed
if schema_as_arrow.metadata:
assert b'ARROW:schema' not in schema_as_arrow.metadata
# pass through writer keyword arguments
for version in ["1.0", "2.4", "2.6"]:
pq.write_metadata(schema, path, version=version)
parquet_meta = pq.read_metadata(path)
# The version is stored as a single integer in the Parquet metadata,
# so it cannot correctly express dotted format versions
expected_version = "1.0" if version == "1.0" else "2.6"
assert parquet_meta.format_version == expected_version
# metadata_collector: list of FileMetaData objects
table = pa.table({'a': [1, 2], 'b': [.1, .2]}, schema=schema)
pq.write_table(table, tempdir / "data.parquet")
parquet_meta = pq.read_metadata(str(tempdir / "data.parquet"))
pq.write_metadata(
schema, path, metadata_collector=[parquet_meta, parquet_meta]
)
parquet_meta_mult = pq.read_metadata(path)
assert parquet_meta_mult.num_row_groups == 2
# append metadata with different schema raises an error
msg = ("AppendRowGroups requires equal schemas.\n"
"The two columns with index 0 differ.")
with pytest.raises(RuntimeError, match=msg):
pq.write_metadata(
pa.schema([("a", "int32"), ("b", "null")]),
path, metadata_collector=[parquet_meta, parquet_meta]
)
def test_table_large_metadata():
# ARROW-8694
my_schema = pa.schema([pa.field('f0', 'double')],
metadata={'large': 'x' * 10000000})
table = pa.table([range(10)], schema=my_schema)
_check_roundtrip(table)
@pytest.mark.pandas
def test_compare_schemas():
df = alltypes_sample(size=10000)
fileh = make_sample_file(df)
fileh2 = make_sample_file(df)
fileh3 = make_sample_file(df[df.columns[::2]])
# ParquetSchema
assert isinstance(fileh.schema, pq.ParquetSchema)
assert fileh.schema.equals(fileh.schema)
assert fileh.schema == fileh.schema
assert fileh.schema.equals(fileh2.schema)
assert fileh.schema == fileh2.schema
assert fileh.schema != 'arbitrary object'
assert not fileh.schema.equals(fileh3.schema)
assert fileh.schema != fileh3.schema
# ColumnSchema
assert isinstance(fileh.schema[0], pq.ColumnSchema)
assert fileh.schema[0].equals(fileh.schema[0])
assert fileh.schema[0] == fileh.schema[0]
assert not fileh.schema[0].equals(fileh.schema[1])
assert fileh.schema[0] != fileh.schema[1]
assert fileh.schema[0] != 'arbitrary object'
@pytest.mark.pandas
def test_read_schema(tempdir):
N = 100
df = pd.DataFrame({
'index': np.arange(N),
'values': np.random.randn(N)
}, columns=['index', 'values'])
data_path = tempdir / 'test.parquet'
table = pa.Table.from_pandas(df)
_write_table(table, data_path)
read1 = pq.read_schema(data_path)
read2 = pq.read_schema(data_path, memory_map=True)
assert table.schema.equals(read1)
assert table.schema.equals(read2)
assert table.schema.metadata[b'pandas'] == read1.metadata[b'pandas']
def test_parquet_metadata_empty_to_dict(tempdir):
# https://issues.apache.org/jira/browse/ARROW-10146
table = pa.table({"a": pa.array([], type="int64")})
pq.write_table(table, tempdir / "data.parquet")
metadata = pq.read_metadata(tempdir / "data.parquet")
# ensure this doesn't error / statistics set to None
metadata_dict = metadata.to_dict()
assert len(metadata_dict["row_groups"]) == 1
assert len(metadata_dict["row_groups"][0]["columns"]) == 1
assert metadata_dict["row_groups"][0]["columns"][0]["statistics"] is None
@pytest.mark.slow
@pytest.mark.large_memory
def test_metadata_exceeds_message_size():
# ARROW-13655: Thrift may enable a default message size that limits
# the size of Parquet metadata that can be written.
NCOLS = 1000
NREPEATS = 4000
table = pa.table({str(i): np.random.randn(10) for i in range(NCOLS)})
with pa.BufferOutputStream() as out:
pq.write_table(table, out)
buf = out.getvalue()
original_metadata = pq.read_metadata(pa.BufferReader(buf))
metadata = pq.read_metadata(pa.BufferReader(buf))
for i in range(NREPEATS):
metadata.append_row_groups(original_metadata)
with pa.BufferOutputStream() as out:
metadata.write_metadata_file(out)
buf = out.getvalue()
metadata = pq.read_metadata(pa.BufferReader(buf))
def test_metadata_schema_filesystem(tempdir):
table = pa.table({"a": [1, 2, 3]})
# URI writing to local file.
fname = "data.parquet"
file_path = str(tempdir / fname)
file_uri = 'file:///' + file_path
pq.write_table(table, file_path)
# Get expected `metadata` from path.
metadata = pq.read_metadata(tempdir / fname)
schema = table.schema
assert pq.read_metadata(file_uri).equals(metadata)
assert pq.read_metadata(
file_path, filesystem=LocalFileSystem()).equals(metadata)
assert pq.read_metadata(
fname, filesystem=f'file:///{tempdir}').equals(metadata)
assert pq.read_schema(file_uri).equals(schema)
assert pq.read_schema(
file_path, filesystem=LocalFileSystem()).equals(schema)
assert pq.read_schema(
fname, filesystem=f'file:///{tempdir}').equals(schema)
with util.change_cwd(tempdir):
# Pass `filesystem` arg
assert pq.read_metadata(
fname, filesystem=LocalFileSystem()).equals(metadata)
assert pq.read_schema(
fname, filesystem=LocalFileSystem()).equals(schema)
def test_metadata_equals():
table = pa.table({"a": [1, 2, 3]})
with pa.BufferOutputStream() as out:
pq.write_table(table, out)
buf = out.getvalue()
original_metadata = pq.read_metadata(pa.BufferReader(buf))
match = "Argument 'other' has incorrect type"
with pytest.raises(TypeError, match=match):
original_metadata.equals(None)
@pytest.mark.parametrize("t1,t2,expected_error", (
({'col1': range(10)}, {'col1': range(10)}, None),
({'col1': range(10)}, {'col2': range(10)},
"The two columns with index 0 differ."),
({'col1': range(10), 'col2': range(10)}, {'col3': range(10)},
"This schema has 2 columns, other has 1")
))
def test_metadata_append_row_groups_diff(t1, t2, expected_error):
table1 = pa.table(t1)
table2 = pa.table(t2)
buf1 = io.BytesIO()
buf2 = io.BytesIO()
pq.write_table(table1, buf1)
pq.write_table(table2, buf2)
buf1.seek(0)
buf2.seek(0)
meta1 = pq.ParquetFile(buf1).metadata
meta2 = pq.ParquetFile(buf2).metadata
if expected_error:
# Error clearly defines it's happening at append row groups call
prefix = "AppendRowGroups requires equal schemas.\n"
with pytest.raises(RuntimeError, match=prefix + expected_error):
meta1.append_row_groups(meta2)
else:
meta1.append_row_groups(meta2)
@pytest.mark.s3
def test_write_metadata_fs_file_combinations(tempdir, s3_example_s3fs):
s3_fs, s3_path = s3_example_s3fs
meta1 = tempdir / "meta1"
meta2 = tempdir / "meta2"
meta3 = tempdir / "meta3"
meta4 = tempdir / "meta4"
meta5 = f"{s3_path}/meta5"
table = pa.table({"col": range(5)})
# plain local path
pq.write_metadata(table.schema, meta1, [])
# Used the localfilesystem to resolve opening an output stream
pq.write_metadata(table.schema, meta2, [], filesystem=LocalFileSystem())
# Can resolve local file URI
pq.write_metadata(table.schema, meta3.as_uri(), [])
# Take a file-like obj all the way thru?
with meta4.open('wb+') as meta4_stream:
pq.write_metadata(table.schema, meta4_stream, [])
# S3FileSystem
pq.write_metadata(table.schema, meta5, [], filesystem=s3_fs)
assert meta1.read_bytes() == meta2.read_bytes() \
== meta3.read_bytes() == meta4.read_bytes() \
== s3_fs.open(meta5).read()
def test_column_chunk_key_value_metadata(parquet_test_datadir):
metadata = pq.read_metadata(parquet_test_datadir /
'column_chunk_key_value_metadata.parquet')
key_value_metadata1 = metadata.row_group(0).column(0).metadata
assert key_value_metadata1 == {b'foo': b'bar', b'thisiskeywithoutvalue': b''}
key_value_metadata2 = metadata.row_group(0).column(1).metadata
assert key_value_metadata2 is None
def test_internal_class_instantiation():
def msg(c):
return f"Do not call {c}'s constructor directly"
with pytest.raises(TypeError, match=msg("Statistics")):
pq.Statistics()
with pytest.raises(TypeError, match=msg("ParquetLogicalType")):
pq.ParquetLogicalType()
with pytest.raises(TypeError, match=msg("ColumnChunkMetaData")):
pq.ColumnChunkMetaData()
with pytest.raises(TypeError, match=msg("RowGroupMetaData")):
pq.RowGroupMetaData()
with pytest.raises(TypeError, match=msg("FileMetaData")):
pq.FileMetaData()
|